

TESTING FOR THE VERIFICATION OF COMPLIANCE OF PV INVERTER WITH: TECHNICAL REGULATION 3.2.1 FOR POWER PLANTS UP TO AND INCLUDING 11 KW AND **TECHNICAL REGULATION 3.2.2 FOR PV POWER** PLANTS ABOVE 11 KW.

Protocol. PE.T-LE-62

Test Report Number	
Trademark	
Tested Model	
Variants Models	

2219/0185-E

SOFAR 2700TL-G3 SOFAR 3300TL-G3, SOFAR 3000TL-G3, SOFAR 2200TL-G3, SOFAR 1600TL-G3, SOFAR 1100TL-G3

APPLICANT

Name	:
Address	:

Shenzhen SOFAR SOLAR Co., Ltd.

401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen City, Guangdong Province, P.R. China

TESTING LABORATORY

Name:	SGS Tecnos, S.A. (Electrical Testing Laboratory)		
Address:	C/ Trespaderne, 29 - Edific 28042 Madrid (Spain)		
Conducted (tested) by:	Hugo Zhang	1dugo Zhang	
	(Project Engineer)		
	Roger Hu (Project Engineer)	Reymber	
Reviewed & Approved by	Jacobo Tevar		
	(Technical Reviewer)		
Date of issue:	19/11/2019		
Number of pages:	84		

Important Note:

SGS

- This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Test Report Historical Revision:	

Test Report Version	Date	Resume
2219/0185-E	19/11/2019	First issuance

INDEX

1	SCOPE		4
2	GENERA	_ INFORMATION	5
2	.1	Testing Period and Climatic conditions	5
2	2.2	Equipment under Testing	
2	.3	Test Equipment List	8
2	2.4	Measurement Uncertainly	8
2	2.5	Definitions	8
2	2.6	Test set up	8
3	RESUME	OF TEST RESULTS	. 10
4	TEST RE	SULTS	.12
4	.1	Normal Operating Conditions	.12
	4.1.1	Normal Operating Requirements	
4	.2	Abnormal Operating Conditions	.18
	4.2.1	Voltage Dip Tolerance	.19
	4.2.2	Recurring Faults In The Public Electricity Supply Grid	.20
4	.3	Power Quality	.21
	4.3.1	Voltage Changes	.21
	4.3.2	DC Content	.22
	4.3.3	Asymmetry	.22
	4.3.4	Flicker	.23
	4.3.5	Harmonic Distortions	.27
	4.3.6	Interharmonic Distortions	.31
	4.3.7	Distortions In The 2-9 kHz Frequency Range	.33
4	.4	Control and regulation	.35
	4.4.1	Active Power Control Functions	.35
	4.4.1.1	Frequency Response	. 35
	4.4.1.2	Frequency Control	. 40
	4.4.1.3		
		1.3.1 Absolute Power Constraint	
	4.4.	1.3.2 Delta Power Constraint (Spinning Reserve)	
		1.3.3 Ramp Rate Constraint	
	4.4.2	Reactive power and voltage control functions	
		Q Control	
		Power Factor Control	
	4.4.2.3		
	4.4.2.4		
	4.4.3	System Protection	
	.5	Reconnection	
4	.6	Voltage and frequency trips	
	4.6.1	Voltage Trip	
	4.6.2	Frequency disconnection	
	4.6.3	Change Of Frequency	
5	PICTURE	S	.74
6	ELECTRI	CAL SCHEME	. 84

1 SCOPE

SGS

SGS Tecnos, S.A. (Electrical Testing Laboratory) has been contracted by Shenzhen SOFAR SOLAR Co., Ltd.to perform the testing according the following standard: "Technical regulation 3.2.1 for power plants up to and including 11 kW", by ENERGINET (rev. 2. Dated on 29th June 2016).and "Technical regulation 3.2.2 for PV power plants above 11 kW", by ENERGINET (rev. 4. Dated on 14th July 2016).

Note: The tests offered at this test report evaluate the EUT compliance with the requirements of **categories A1, A2 and B** defined as below:

Plant categories in relation to the total rated power at the Point of Connection:

- A1. Plants up to and including 11 kW
- A2. Plants above 11 kW up to and including 50 kW
- B. Plants above 50 kW up to and including 1.5 MW
- C. Plants above 1.5 MW up to and including 25 MW
- D. Plants above 25 MW or connected to over 100 kV.

2 GENERAL INFORMATION

SGS

2.1 Testing Period and Climatic conditions

The necessary testing has been performed along 14 working days between the18th September of 2019 and the 31th October of 2019.

All the tests and checks have been performed in accordance with the reference Standard (the tests are done at $25 \pm 5^{\circ}$ C, 96 kPa \pm 10 kPa and 65% RH \pm 10% RH).

SITE TEST

Name	:
Address	:

2.2 Equipment under Testing

Apparatus type/ Installation	:
Manufacturer/ Supplier/ Installer	:
Trade mark	:
Model/ Type	:
Serial Number	:
Software Version	:
Rated Characteristics	

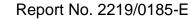
Shenzhen SOFAR SOLAR Co., Ltd.

401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen City, Guangdong Province, P.R. China

Solar Grid-tied Inverter (Single Phase Inverter) Shenzhen SOFAR SOLAR Co., Ltd.

SOFAR 2700TL-G3 SA3CS127K8M010 V 1.00

DC input: Operating MPPT range 50-550V; Max.12A AC output: 230Vac, 50Hz, Max.13A, 2700VA


Date of manufacturing: 2018

Test item particulars	
Input:	PV
Output	AC
Class of protection against electric shock:	Class I
Degree of protection against moisture:	IP 65
Type of connection to the main supply:	Single phase – Fixed installation
Cooling group	Natural Convection
Modular	No
Internal Transformer	No

5	FAR	Solar Grid-tied Inv	verter
	SOLAR		
Mo	odel No.	SOFAR 2700T	L-G3
	x.DC Input Voltage		<u>550V</u>
Op	erating MPPT Voltag	e Range50~	550V
Ma	x. Input Current		_1 <u>2A</u>
Ma	x. PV lsc minal Grid Voltage		_1 <u>5A</u>
No	minal Grid Voltage	L/N/PE,23	30Vac
Ma	ix. Output Current		13A
No	minal Grid Frequenc	<u>y50/</u>	<u>60Hz</u>
Ma	x. Output Power	27	00VA
Po	wer Factor	1(adjustable+	
Ing	press protection		<u>IP65</u>
	erating Temperatur	e Range _30~+	<u>⊦60°C</u>
	pology		
	otective Class		Class I
Ad Inc Co	Inufacturer:Shenzher dress: 401, Building 4, lustrial Park,District 6 mmunity, XinAn Street strict, Shenzhen, China	, AnTongDa 8, XingDong t,BaoAn	., Ltd.
	0126-1-1,VDE-AR-N4105, IEC6 32116, UTE C15-712-1,AS4777	1727,	
Ľ	li 🔥 C E 🗸	<u>AO. A</u> A	X

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. Labels of other models are as the same wit SOFAR 2700TL-G3's except the parameters of rating.

Equipment under testing:

- SOFAR 2700TL-G3

Variant models:

SGS

- SOFAR 3300TL-G3
- SOFAR 3000TL-G3
- SOFAR 2200TL-G3
- SOFAR 1600TL-G3
 SOFAR 1100TL-G3
- The variants models have been included in this test report without tests because the following features don't change regarding to the tested model:
 - Same connection system and hardware topology
 - Same control algorithm.
 - Output power within 2.5 and 2/3 of the rated power output of the EUT.
 - Same Firmware Version

AC Coupled Inverter technical datasheets for all models are offered below:

Model Number	SOFAR 3300TL-G3	SOFAR 3000TL-G	SOFAR 2700TL-G3	SOFAR 2200TL-G3	SOFAR 1600TL-G3	SOFAR 1100TL-G3	
Max. input voltage		550Vd.c.			500Vd.c		
Max. input current	12Ad.c.	12Ad.c.	12Ad.c.	12Ad.c.	12Ad.c.	12Ad.c.	
Operating MPPT voltage range		50-550Vd.c.			50-500Vd.c.		
Full load DC Voltage Range	300-500 Vd.c.	275-500 Vd.c.	250-500 Vd.c.	200-450 Vd.c.	150-450 Vd.c.	110-450 Vd.c.	
Rated voltage			36	0V			
Rated grid voltage	230Va.c.						
Rated grid frequency			50	Hz			
Rated output power	3.3kW	3.0kW	2.7kW	2.2kW	1.6kW	1.1kW	
Rated output current	13Aa.c.	13 Aa.c.	11.8Aa.c.	9.6Aa.c.	7Aa.c.	4.8Aa.c.	
Max. Output Current	16Aa.c.	14.5 Aa.c.	13Aa.c.	10.6Aa.c.	7.7Aa.c.	5.3Aa.c.	
Power factor	0.8 leading to 0.8 lagging						
Ambient temperature	-30 °C ~60°C						
Ingress protection	IP65						
Protective class	Class I						

The results obtained apply only to the particular sample tested that is the subject of the present test report. The most unfavorable result values of the verifications and tests performed are contained herein. Throughout this report a point (comma) is used as the decimal separator.

2.3 Test Equipment List

SGS

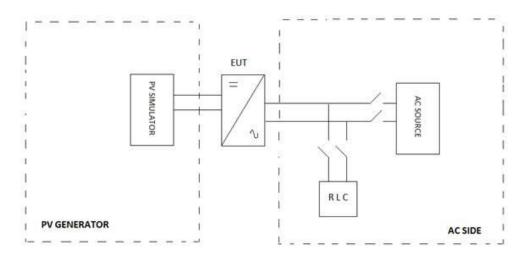
From	No.	Equipment Name	Model No.	Equipment No.	Calibration Date	Equipment calibration due date
	1	Digital oscilloscope	DS0X3024T	MY5725189 8	2019-02-13	2020-02-12
	2	Voltage probe	SI-9110	111541	2019-02-13	2020-02-12
	3	Voltage probe	SI-9110	152627	2019-02-13	2020-02-12
	4	Voltage probe	SI-9110	111134	2019-02-13	2020-02-12
Sofarsolar	5	Power analyzer	WT3000	91N610888	2019-02-13	2020-02-12
ars	6	Current probe	i1000s	29503223	2019-02-13	2020-02-12
Sof	7	Current probe	i1000s	30413448	2019-02-13	2020-02-12
0,	8	Current probe	CP5150	C150150008	2019-02-13	2020-02-12
	9	Temperature & Humidity meter	TH101B	2010302452 20	2019-02-13	2020-02-12
	10	Power analyzer	PA3000	PA3005- P0005-1246	2019-02-13	2020-02-12
SGS	11	True RMS Multimeter	Fluke / 289C	GZE012-53	2019-02-26	2020-02-25

2.4 Measurement Uncertainly

±1.5 %
±2.0 %
±0.2 %
±0.2 %
±2.5 %
±1°
±0.01

Note1: Measurements uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the solicitant.

Note2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.


2.5 Definitions

ESE	Auxiliary inverter	Pn	Nominal Power
EUT	Equipment under testing	Q _f	Quality factor
In	Nominal Current	UF	Under frequency
OF	Over frequency	Un	Nominal Voltage
OV	Over voltage	UV	Under voltage
PF	Power Factor		

2.6 Test set up

Below is the simplified construction of the test set up.

SGS

Current and voltage clamps have been connected to the inverter output for all the tests.

All the tests and checks have been performed in accordance with the reference Standard as specified previously.

The test	bench	used	includes:

EQUIPMENT	MARK / MODEL	RATED CHARACTERISTICS	OWNER / ID. CODE
AC source	Chroma / 61860	100KVA 10-300Vrms 45-65Hz	-
DC source	Chroma / 62150H- 1000S	0 – 1000Vdc (0.01V step) 0 – 40A (0.01A step)	-

3 RESUME OF TEST RESULTS

INTERPRETATION KEYS

SGS

Test object does meet the requirement:	Ρ	Pass
Test object does not meet the requirement:	F	Fails
Test case does not apply to the test object:	N/A	Not applicable
To make a reference to a table or an annex:	See ad	lditional sheet
To indicate that the test has not been realized:	N/R	Not realized

Standard	STANDARD REQUIREMENTS			
Section	Technical regulation 3.2.1 for PV power plants up to and including 11 kW			
	Technical requirements			
3.2	Normal operating conditions	Р		
3.3	Abnormal operating conditions	Р		
4	Power quality			
4.1	Voltage changes	Р		
4.2	DC content	Р		
4.3	Asymmetry	NA		
4.4	Flicker	Р		
4.5	Harmonic distortions	Р		
4.6	Interharmonic distortions	NA		
4.7	Distortions in the 2-9 kHz frequency range	NA		
5	Control and regulation			
5.2	Active power control functions			
5.2.1	Frequency response	Р		
5.2.2	Constraint functions			
5.2.2.1	Absolute power constraint	Р		
5.2.2.2	Ramp rate constraint	Р		
5.3	Reactive power and voltage control functions			
5.3.1	Q control	Р		
5.3.2	Power factor control	Р		
5.3.3	Automatic power factor control	Р		
6.1	Reconnection	Р		
6.2	Voltage and frequency trips	Р		

Note: The declaration of conformity has been evaluated taking into account the IEC Guide 115.

Standard	STANDARD REQUIREMENTS					
Section	Technical regulation 3.2.2 for PV power plants above 11 kW					
	Technical requirements					
3.2	Normal operating conditions					
3.2.1	Normal production requirements	Р				
3.3	Abnormal operating conditions					
3.3.1	Voltage dip tolerance	NA				
3.3.2	Recurring faults in the public electricity supply grid	NA				
4	Power quality					
4.2	DC content	Р				
4.3	Asymmetry	NA				
4.4	Flicker	Р				
4.5	Harmonic distortions	Р				
4.6	Interharmonic distortions	Р				
4.7	Distortions in the 2-9 kHz frequency range P					
5	Control and regulation					
5.2	Active power control functions					
5.2.1	Frequency response	Р				
5.2.2	Frequency control	NA				
5.2.3	Constraint functions					
5.2.3.1	Absolute power constraint	Р				
5.2.3.2	Delta power constraint (spinning reserve)	NA				
5.2.3.3	Ramp rate constraint	Р				
5.3	Reactive power and voltage control functions					
5.3.1	Q control	Р				
5.3.2	Power factor control	Р				
5.3.3	Voltage control	NA				
5.3.4	Automatic power factor control	Р				
5.4	System protection	NA				
6.1	Reconnection	Р				
6.3.2	Voltage and frequency trips	Р				

Note: The declaration of conformity has been evaluated taking into account the IEC Guide 115.

4 TEST RESULTS

The tests offered at this test report evaluate the EUT compliance with the requirements for Standard "Technical regulation 3.2.1 for PV power plants up to and including 11 kW" as category A1 and "Technical Regulation 3.2.2 for PV power plants above 11 kW" as category A2 and B.

4.1 NORMAL OPERATING CONDITIONS

4.1.1 Normal Operating Requirements

Normal operating requirements are different when unit is connected as plant category A1 or plant category A2, B.

For connected as plant category A1, the normal operating voltage is Uc+10% and Uc-15%, and the frequency range is 49.00 to 51.00 Hz. Tests have been tested according to chapter 3.2 of TR3.2.1, and the requirements should be referred to the chapter 3.2.1 of the standard.

For connected as plant category A2 or B, the normal operating voltage is Uc±10%, and the frequency range is 47.00 to 52.00 Hz. Tests have been tested according to chapter 3.2 of TR3.2.2, and the requirements should be referred to the chapter 3.2.1 of the standard.

The settings of normal voltage and frequency is adjustable.

Test results are offered at the tables below.

For category A1:

Test 1		Under Voltage + Under Frequency		ency
Voltage	Frequency	Active Power measured (*)	Minimum Operation Time	Time measured
85.0%Un	49.0 Hz	94.25%Pn	Continuous operation	> 30 minutes
Discon	nection		🖾 NO 🛛 YES	

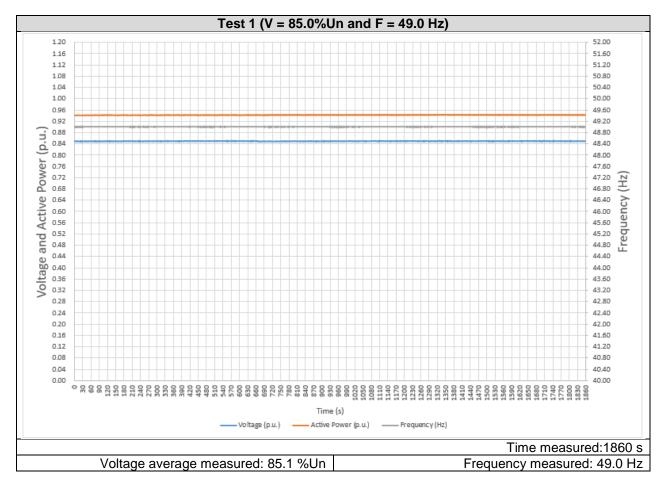
Test 2		Over Voltage + Over Frequency		
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured
110.0%Un	51.0 Hz	99.95%Pn	Continuous operation	> 30 minutes
Discon	nection		🖾 NO 🛛 YES	

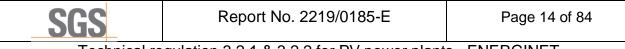
Te	Test 3 Norm		nal Voltage + Under Frequ	ency
Voltage	Frequency	Active Power measured (*)	Minimum Operation Time	Time measured
100.0%Un	47.5 Hz	100.15%Pn	Continuous operation	> 30 minutes
Discon	nection		🖾 NO 🛛 YES	

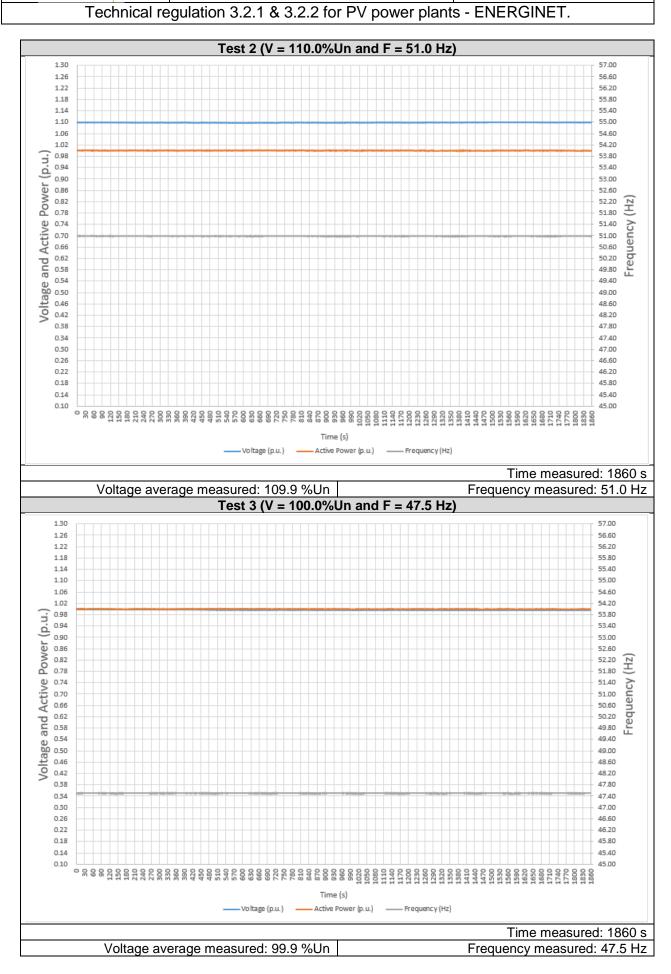
Test 4 Norn		mal Voltage + Over Freque	ency	
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured
100.0%Un	51.5 Hz	99.95%Pn	Continuous operation	> 30 minutes
Discon	nection		🖾 NO 🛛 YES	

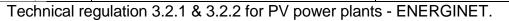
Test 5		Normal Voltage + Under Frequence		ency
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured
100.0%Un	47.1 Hz	100.1%Pn	Continuous operation	> 10 s
Discon	nection		🖾 NO 🛛 YES	

Те	st 6	Normal Voltage + Over Frequency						
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured				
100.0%Un	51.9 Hz	99.93%Pn	Continuous operation	> 10 s				
Disconnection			🖾 NO 🛛 YES					

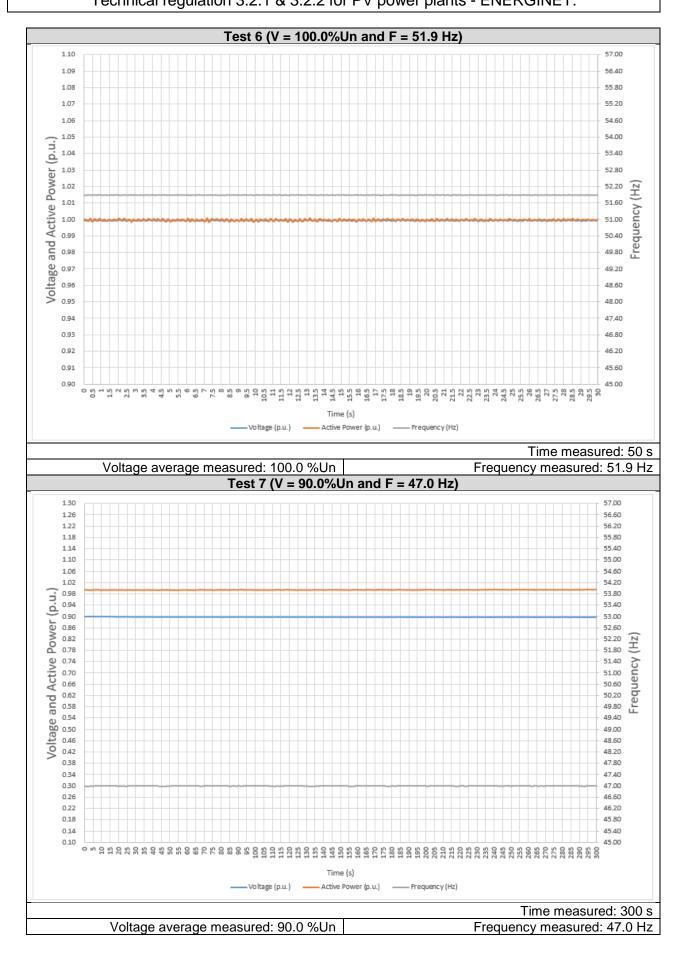

For category A2 and B:

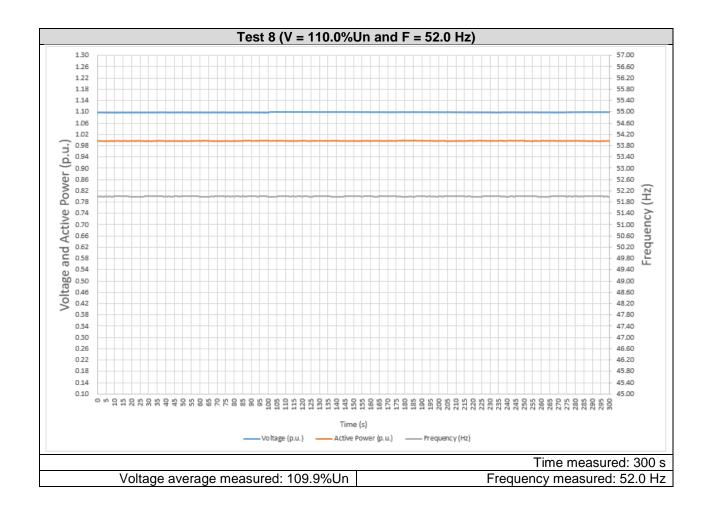

Te	st 7	Under Voltage + Under Frequency						
Voltage	Voltage Frequency Activ		Minimum Operation Time Time measured					
90.0%Un	47.0 Hz	99.46%Pn	Continuous operation	> 4 minutes				
Disconnection			🖾 NO 🛛 YES					

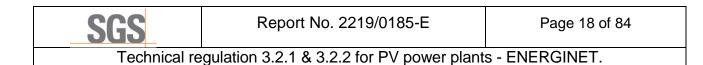

Tes	st 8	Over Voltage + Over Frequency					
Voltage	Frequency	Active Power measured	Minimum Operation Time	Time measured			
110.0%Un	52.0 Hz	99.92%Pn	Continuous operation	> 4 minutes			
Disconnection			🖾 NO 🛛 YES				


(*) The full value of active power has not been reached due to limitations in the maximum current of the inverter.

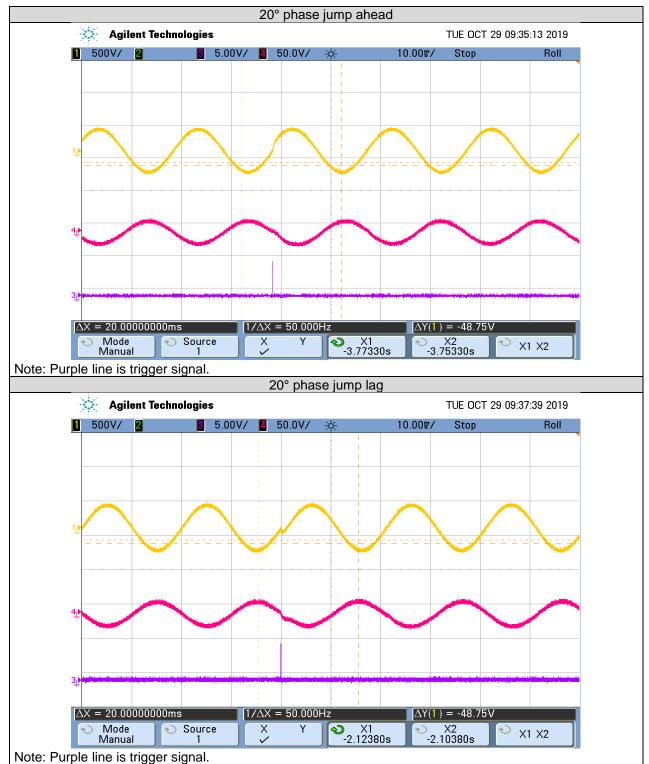
Test results are represented in graphics on the following pages.

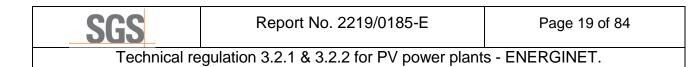






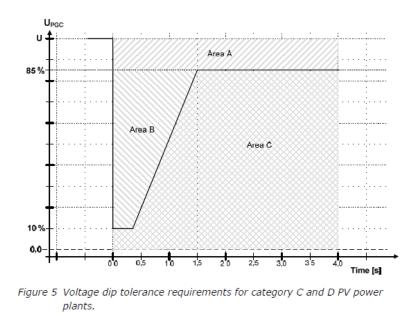
Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET.




4.2 ABNORMAL OPERATING CONDITIONS

According to chapter 3.3 of standard TR3.2.1, a plant in plant category A1 must be designed to withstand transitory (80-100 ms) phase jumps of up to 20° in the Point of Connection (POC) without disrupting

Test results are represented in graphics below.



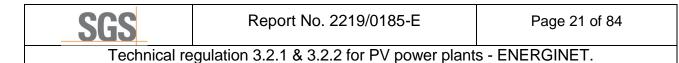
Note: It is not applicable when the inverter is installed as plant category A2 and B according to standard TR3.2.2.

4.2.1 Voltage Dip Tolerance

According to chapter 3.3.1 of standard TR3.2.2, in the Point of Connection, a PV power plant must be designed to withstand voltage dips down to 10% of the voltage in the Point of Connection over a period of minimum 250 ms (line-to-line voltages for the 50 Hz component), as shown in Figure below, without disconnecting.

It is not applicable due to the inverter is applying to plant category A1, A2 and B defined in this standard, according to manufacturer Statements. Requirements only apply to category C and D.

4.2.2 Recurring Faults In The Public Electricity Supply Grid


SGS

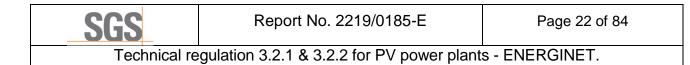
According to chapter 3.3.2 of standard TR3.2.2, the PV power plant and any compensation equipment must stay connected during and after faults have occurred in the public electricity supply grid as specified in Table below. These requirements apply to the Point of Connection, but the fault sequence is at a random point in the public electricity supply grid.

Туре	Duration of fault
Three-phase short circuit	Short circuit for 150 ms
Phase-to-phase-to-earth short	Short circuit for 150 ms followed by a new
circuit/phase-to-phase short circuit	short circuit 0.5 to 3 seconds later, also
	with a duration of 150 ms
Phase-to-earth short circuit	Phase-to-earth fault for 150 ms followed
	by a new phase-to-earth fault 0.5 to 3
	seconds later, also with a duration of 150
	ms

Table 2 Types and duration of faults in the public electricity supply grid.

It is not applicable due to the inverter is applying to plant category A1, A2 and B defined in this standard, according to manufacturer Statements. The test is only applicable to plant categories C and D.

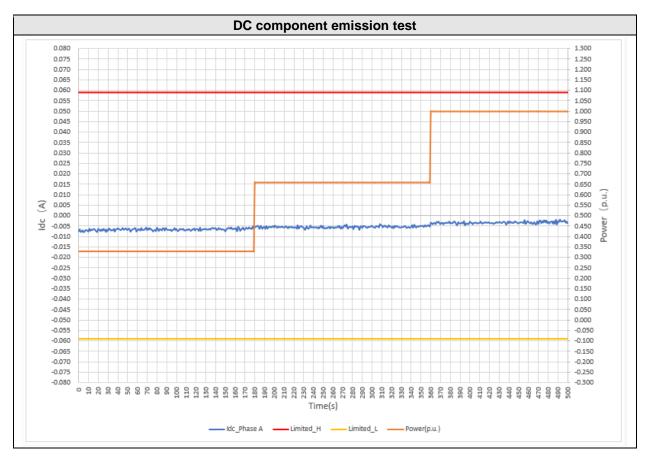
4.3 POWER QUALITY


4.3.1 Voltage Changes

According to chapter 4.1 of standard TR3.2.1, The inrush current must not lead to a voltage change of more than 4% in the Point of Connection.

Test results is represented in graphics below.

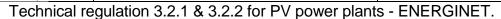
It is measured the test voltage change is 225V which is -2.17% in the Point of Connection



4.3.2 DC Content

According to chapter 4.2 of standard TR3.2.1 and TR3.2.2, the DC content of the supplied AC current in the plant's Point of Connection (POC) may not exceed 0.5% of the nominal current.

Ratio of rated output power (VA)	33%Pn	66%Pn	100%Pn		
Test value (phase A)	-0.007A	-0.005A	-0.003A		
Limit (A)	0.059	0.059	0.059		


Test results is represented in graphics below

4.3.3 Asymmetry

According to chapter 4.3 of standard TR3.2.1 and TR3.2.2, the asymmetry between the phases at normal operation or in the event of faults in the electricity-generating unit may not exceed 16A.

It is not applicable due to the unit is single phase.

4.3.4 Flicker

SGS

Test is to verify that the flicker emission from continuous operation of the PV power plant is below the limit value in the Point of Connection according to chapter 4.4 of standard TR3.2.1 and TR3.2.2.

The measurements of voltage fluctuations have been measured according to the standard, at 33%, 66% and 100 % of the nominal power value of the inverter.

	Starting operation and Stopping operation									
P _{bin} (%)	P _{bin} (%) Limit 33 % 66 % 100 %									
PST	≤1	0.07	0.07	0.08						
PLT	≤ 0.65	0.04	0.04	0.04						
dc	≤ 3.30%	0.10%	0.19%	0.29%						
dmax	4%	0.10%	0.20%	0.32%						

As it can be seen in the next screenshots, this test has two steps:

1.Starting operation

2.Stopping operation

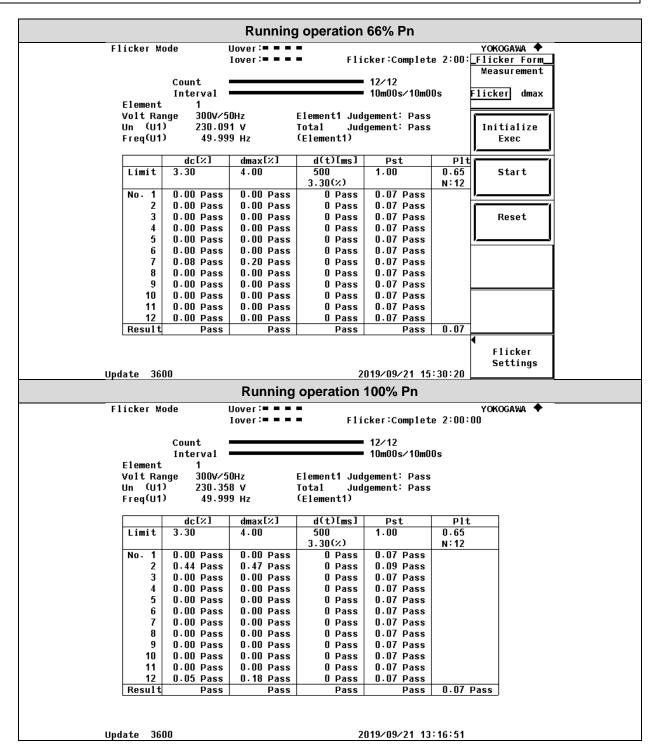
All values are the most unfavorable of the two steps.

		Starting o	peration a	nd Stoppin	g operatio	n 33% Pn	
F1	icker M		Uover := = = Iover := = =	= I1 = F1i	: 30A cker:Complet		ogawa 🔶
	Element	Count Interval 1			2/2 10m00s/10m0	Os	
	Volt Ra Un (Ul Freq(Ul) 229.40	6 V	Element1 Jud Total Jud (Element1)	gement: Pass gement: Pass		
		dc[%]	dmax[%]	d(t)[ms]	Pst	P1t	
	Limit	3.30	4.00	500 3.30(%)	1.00	0.65 N:12	
	No. 1 2	0.10 Pass 0.04 Pass	0.10 Pass 0.10 Pass	0 Pass 0 Pass	0.07 Pass 0.07 Pass		
	Result	Pass	Pass	Pass	Pass	0.04 Pass	
Upd	late 61	DO		2	019/09/19 15	:29:49	

Report No. 2219/0185-E

Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET.

	Starting o	peration a	nd Stoppin	g operation	n 66% Pn	
Flicker Mod		Jover := = = = [over := = = =	I1 F1i	: 20A cker:Complete		ogawa 🔶
Element Volt Rang Un (U1) Freq(U1)	Count Interval ge 300v/50 229.463 49.999	ΣV	Elementl Jud Total Jud (Elementl)	2∕2 10m00s⁄10m00 gement: Pass gement: Pass	Ds	
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t	
Limit	3.30	4.00	500 3.30(%)	1.00	0.65 N:12	
No. 1 2	0.10 Pass 0.19 Pass	0.10 Pass 0.20 Pass	0 Pass 0 Pass	0.07 Pass 0.07 Pass		
Result	Pass	Pass	Pass	Pass	0.04 Pass	
Update 600		peration ar	20 nd Stopping			
Flicker Mod		Jover := = = = : [over := = = :	= I1 = F1i	: 30A ker:Complete		ogawa 🔶
Element Volt Rang Un (U1)	229.41	t v i	Elementl Jud Total Jud	2/2 10m00s/10m00		
Freq(U1)	49.999) Hz	(Element1)			
Limit	dc[%] 3.30	dmax[%] 4.00	d(t)[ms] 500	Pst 1.00	P1t 0.65	
	0.10 Pass 0.29 Pass	0.10 Pass 0.32 Pass	3.30(%) 0 Pass 0 Pass	0.07 Pass 0.08 Pass	N:12	
Result	Pass	Pass	Pass	Pass	0.04 Pass	
Update 600						

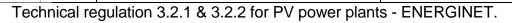

Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET.

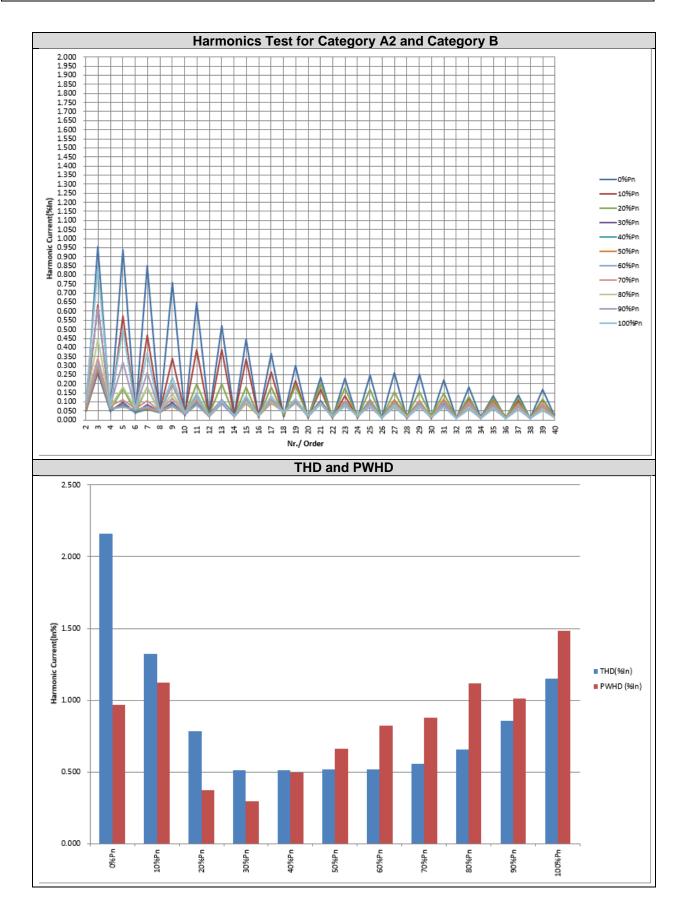
	Running operation									
P _{bin} (%)	Limit 33 % 66 % 100 %									
PST	≤ 1	0.07	0.07	0.07						
PLT	≤ 0.65	0.07	0.07 0.07							
dc	≤ 3.30%	0.07%	0.08%	0.44%						
dmax	4%	0.16%	0.20%	0.47%						

As it can be seen in the next screenshots is running operation. The values took of Pst and Plt are the most unfavorable of the twelve steps of 10 minutes each one.

	Running operation 33% Pn									
Flicker M		Uover := = = Iover := = =		: 30A cker:Complet		ogawa 🔶				
Element Volt Ra Un (U1 Freq(U1) 229.67	4 V	Element1 Jud Tota1 Jud (Element1)	12/12 10m00s/10m0 gement: Pass gement: Pass						
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t					
Limit	3.30	4.00	500	1.00	0.65					
			3.30(%)		N:12					
No. 1	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
2	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
3	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
4	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
5	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
6	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
7	0.07 Pass	0.15 Pass	0 Pass	0.07 Pass						
8	0.05 Pass	0.16 Pass	0 Pass	0.07 Pass						
9	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
10	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
11	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
12	0.00 Pass	0.00 Pass	0 Pass	0.07 Pass						
Result		Pass	Pass	Pass	0.07 Pass					

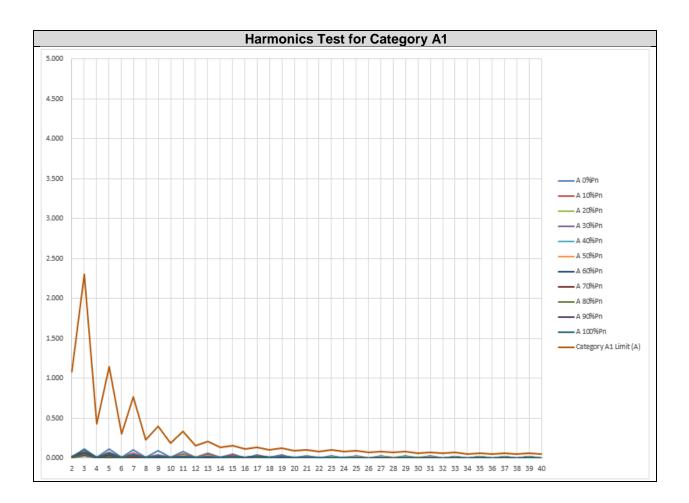
4.3.5 Harmonic Distortions


SGS


-

Test is according to chapter 4.5 of standard TR3.2.1 and TR3.2.2.

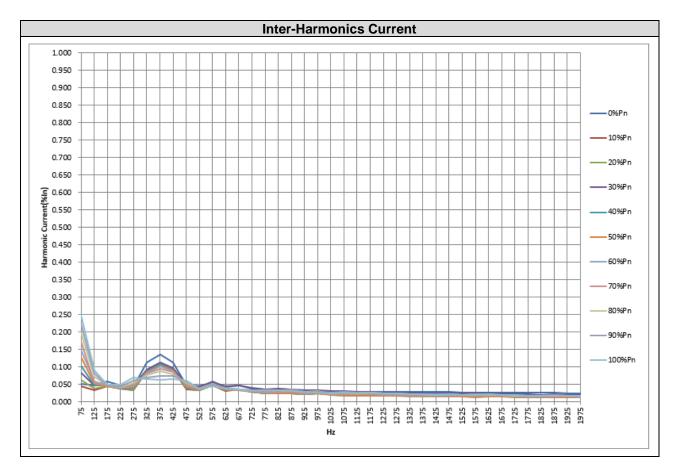
The values measured for current harmonics is respectively offered in the following points.


				Harn	nonic Te	est for C	Category	/ A2 and	d Categ	ory B			
P (%P _n)	0	10	20	30	40	50	60	70	80	90	100	Category A2 Limit	Category B Limit
Nr./ Order	Ih(%)	I _h (%)	Ih(%)	I _h (%)	Ih(%)	Ih(%)	Ih(%)						
2	0.053	0.063	0.052	0.049	0.053	0.060	0.076	0.101	0.097	0.108	0.117	-	-
3	0.954	0.634	0.295	0.261	0.280	0.284	0.305	0.340	0.448	0.615	0.842	-	-
4	0.044	0.049	0.058	0.051	0.055	0.064	0.064	0.079	0.078	0.084	0.083	-	-
5	0.937	0.571	0.175	0.096	0.084	0.078	0.071	0.109	0.182	0.319	0.504	10.7	3.6
6	0.035	0.051	0.046	0.043	0.043	0.052	0.059	0.063	0.069	0.061	0.061	-	-
7	0.850	0.466	0.183	0.085	0.059	0.062	0.070	0.105	0.179	0.260	0.371	7.2	2.5
8	0.042	0.045	0.041	0.044	0.043	0.045	0.051	0.051	0.049	0.045	0.040	-	-
9	0.760	0.340	0.200	0.098	0.089	0.076	0.082	0.120	0.147	0.196	0.236	-	-
10	0.022	0.035	0.032	0.029	0.032	0.031	0.030	0.037	0.035	0.038	0.041	-	-
11	0.649	0.388	0.201	0.112	0.092	0.085	0.084	0.111	0.124	0.133	0.149	3.1	1.0
12	0.033	0.021	0.030	0.031	0.027	0.021	0.022	0.026	0.024	0.024	0.024	-	-
13	0.520	0.390	0.197	0.113	0.093	0.092	0.089	0.106	0.101	0.096	0.108	2	0.7
14	0.028	0.018	0.021	0.031	0.022	0.018	0.019	0.023	0.025	0.021	0.021	-	-
15	0.448	0.335	0.180	0.114	0.104	0.096	0.100	0.100	0.101	0.116	0.132	-	-
16	0.013	0.014	0.019	0.028	0.021	0.023	0.026	0.029	0.027	0.026	0.023	-	-
17	0.365	0.266	0.182	0.111	0.098	0.093	0.103	0.114	0.103	0.111	0.134	-	-
18	0.019	0.019	0.028	0.044	0.047	0.045	0.040	0.040	0.041	0.044	0.042	-	-
19	0.302	0.216	0.189	0.114	0.111	0.106	0.099	0.098	0.092	0.100	0.116	-	-
20	0.012	0.014	0.017	0.022	0.021	0.019	0.021	0.026	0.027	0.030	0.029	-	-
21	0.233	0.167	0.200	0.107	0.101	0.092	0.087	0.091	0.092	0.088	0.090	-	-
22	0.011	0.014	0.014	0.017	0.016	0.015	0.021	0.021	0.020	0.020	0.024	-	-
23	0.231	0.132	0.179	0.104	0.101	0.103	0.098	0.088	0.084	0.080	0.077	-	-
24	0.011	0.013	0.014	0.018	0.019	0.019	0.017	0.019	0.025	0.027	0.027	-	-
25	0.250	0.104	0.168	0.098	0.112	0.108	0.097	0.085	0.075	0.072	0.077	-	-
26	0.011	0.012	0.015	0.014	0.014	0.012	0.012	0.013	0.014	0.013	0.014	-	-
27	0.260	0.100	0.154	0.096	0.112	0.110	0.099	0.086	0.078	0.074	0.073	-	-
28	0.010	0.012	0.025	0.023	0.024	0.018	0.015	0.014	0.017	0.016	0.012	-	-
29	0.252	0.096	0.154	0.094	0.103	0.106	0.099	0.085	0.075	0.073	0.075	-	-
30	0.010	0.011 0.110	0.022	0.018	0.016	0.013	0.013	0.019	0.018	0.016	0.015	-	-
31 32	0.223		0.148	0.090	0.107 0.011	0.114 0.010	0.102	0.086 0.011	0.075	0.074 0.012	0.072	-	-
32	0.012	0.012 0.117	0.014	0.012	0.100	0.106	0.010	0.011	0.070	0.012	0.012	-	
34	0.014	0.015	0.012	0.004	0.010	0.010	0.013	0.000	0.012	0.002	0.033	-	-
35	0.135	0.109	0.122	0.086	0.093	0.103	0.091	0.075	0.069	0.063	0.063	-	-
36	0.010	0.013	0.014	0.011	0.009	0.009	0.009	0.009	0.011	0.011	0.010	-	-
37	0.137	0.108	0.120	0.087	0.086	0.095	0.085	0.073	0.064	0.057	0.058	-	-
38	0.011	0.012	0.012	0.012	0.010	0.009	0.010	0.010	0.012	0.012	0.013	-	-
39	0.168	0.112	0.118	0.078	0.079	0.090	0.083	0.070	0.060	0.052	0.056	-	-
40	0.013	0.013	0.013	0.010	0.009	0.008	0.009	0.009	0.011	0.013	0.013	-	-
THD (%)	2.160	1.321	0.785	0.511	0.513	0.516	0.516	0.555	0.655	0.855	1.150	13	4.5
PWHD (%)	0.969	1.123	0.375	0.298	0.493	0.661	0.822	0.880	1.118	1.012	1.483	22	7.9

Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET.

				Ha	armonic	Test for	Categor	y A1				
P (%P _n)	0	10	20	30	40	50	60	70	80	90	100	Category A1 Limit
Nr./ Order	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)
2	0.006	0.007	0.006	0.006	0.006	0.007	0.009	0.012	0.011	0.013	0.014	1.080
3	0.113	0.075	0.035	0.031	0.033	0.034	0.036	0.040	0.053	0.073	0.099	2.300
4	0.005	0.006	0.007	0.006	0.006	0.008	0.008	0.009	0.009	0.010	0.010	0.430
5	0.111	0.067	0.021	0.011	0.010	0.009	0.008	0.013	0.021	0.038	0.060	1.140
6	0.004	0.006	0.005	0.005	0.005	0.006	0.007	0.007	0.008	0.007	0.007	0.300
7	0.100	0.055	0.022	0.010	0.007	0.007	0.008	0.012	0.021	0.031	0.044	0.770
8	0.005	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.005	0.005	0.230
9	0.090	0.040	0.024	0.012	0.010	0.009	0.010	0.014	0.017	0.023	0.028	0.400
10	0.003	0.004	0.004	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.184
11	0.077	0.046	0.024	0.013	0.011	0.010	0.010	0.013	0.015	0.016	0.018	0.330
12	0.004	0.002	0.004	0.004	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.153
13	0.061	0.046	0.023	0.013	0.011	0.011	0.010	0.012	0.012	0.011	0.013	0.210
14	0.003	0.002	0.002	0.004	0.003	0.002	0.002	0.003	0.003	0.002	0.003	0.131
15	0.053	0.040	0.021	0.013	0.012	0.011	0.012	0.012	0.012	0.014	0.016	0.150
16	0.002	0.002	0.002	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.115
17	0.043	0.031	0.021	0.013	0.012	0.011	0.012	0.013	0.012	0.013	0.016	0.132
18	0.002	0.002	0.003	0.005	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.102
19	0.036	0.025	0.022	0.013	0.013	0.013	0.012	0.012	0.011	0.012	0.014	0.118
20	0.001	0.002	0.002	0.003	0.003	0.002	0.002	0.003	0.003	0.004	0.003	0.092
21	0.028	0.020	0.024	0.013	0.012	0.011	0.010	0.011	0.011	0.010	0.011	0.107
22	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.084
23	0.027	0.016	0.021	0.012	0.012	0.012	0.012	0.010	0.010	0.009	0.009	0.098
24	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.077
25	0.029	0.012	0.020	0.012	0.013	0.013	0.011	0.010	0.009	0.009	0.009	0.090
26	0.001	0.001	0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.002	0.071
27	0.031	0.012	0.018	0.011	0.013	0.013	0.012	0.010	0.009	0.009	0.009	0.083
28	0.001	0.001	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.066
29	0.030	0.011	0.018	0.011	0.012	0.013	0.012	0.010	0.009	0.009	0.009	0.078
30	0.001	0.001	0.003	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.061
31	0.026	0.013	0.018	0.011	0.013	0.013	0.012	0.010	0.009	0.009	0.009	0.073
32	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.058
33	0.022	0.014	0.015	0.010	0.012	0.013	0.011	0.010	0.008	0.007	0.007	0.068
34 35	0.002	0.002	0.001 0.014	0.001 0.010	0.001	0.001	0.001	0.001 0.009	0.001 0.008	0.001 0.007	0.002	0.054 0.064
35	0.016	0.013	0.014	0.010	0.001	0.012	0.001	0.009	0.008	0.007	0.007	0.064
30	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.051
38	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.003	0.003	0.007	0.007	0.048
39	0.020	0.013	0.001	0.009	0.009	0.001	0.001	0.001	0.007	0.001	0.002	0.058
40	0.002	0.002	0.002	0.000	0.001	0.001	0.001	0.000	0.001	0.000	0.002	0.046

4.3.6 Interharmonic Distortions


SGS

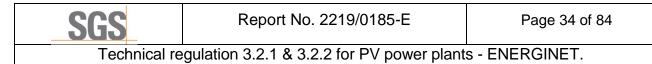
Test is according to chapter 4.6 of standard TR3.2.1 and TR3.2.2.

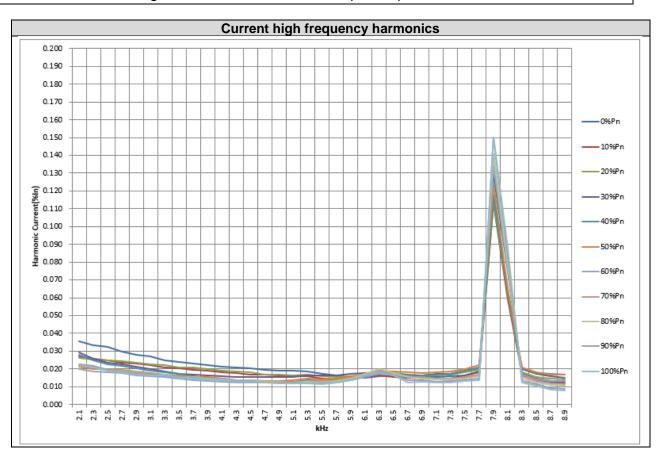
The results of inter-harmonics measurements are represented in the tables and graphics below.

P (%P _n)	0	10	20	30	40	50	60	70	80	90	100	Category B Limit
f [Hz]	I _h (%)											
75	0.052	0.045	0.062	0.084	0.104	0.129	0.151	0.175	0.201	0.224	0.250	0.400
125	0.048	0.035	0.038	0.047	0.047	0.052	0.060	0.055	0.073	0.082	0.090	0.600
175	0.060	0.046	0.046	0.050	0.047	0.046	0.047	0.048	0.047	0.048	0.050	0.429
225	0.047	0.038	0.037	0.044	0.038	0.039	0.040	0.041	0.043	0.046	0.050	0.333
275	0.042	0.034	0.034	0.045	0.039	0.041	0.045	0.049	0.054	0.061	0.069	0.273
325	0.113	0.088	0.089	0.093	0.088	0.087	0.084	0.081	0.077	0.070	0.065	0.231
375	0.136	0.110	0.110	0.114	0.108	0.105	0.102	0.095	0.087	0.075	0.063	0.200
425	0.114	0.093	0.094	0.097	0.092	0.090	0.088	0.085	0.080	0.074	0.066	0.176
475	0.047	0.037	0.038	0.050	0.041	0.043	0.046	0.050	0.054	0.058	0.062	0.158
525	0.043	0.035	0.034	0.046	0.035	0.033	0.036	0.037	0.038	0.038	0.039	0.143
575	0.058	0.048	0.048	0.056	0.049	0.049	0.051	0.052	0.051	0.050	0.046	0.130
625	0.042	0.032	0.033	0.044	0.036	0.036	0.038	0.039	0.039	0.039	0.038	0.120
675	0.047	0.036	0.035	0.046	0.035	0.033	0.035	0.034	0.036	0.036	0.036	0.111
725	0.038	0.030	0.029	0.040	0.030	0.029	0.031	0.032	0.034	0.033	0.032	0.103
775	0.035	0.026	0.025	0.037	0.025	0.023	0.027	0.031	0.033	0.034	0.033	0.100
825	0.036	0.027	0.026	0.037	0.026	0.024	0.027	0.028	0.031	0.032	0.033	0.100
875	0.034	0.025	0.025	0.036	0.026	0.025	0.030	0.032	0.035	0.035	0.032	0.100
925	0.032	0.023	0.023	0.033	0.023	0.022	0.025	0.027	0.030	0.030	0.030	0.100
975	0.032	0.024	0.025	0.033	0.024	0.024	0.027	0.029	0.031	0.030	0.028	0.100
1025	0.031	0.022	0.022	0.030	0.021	0.021	0.023	0.026	0.026	0.026	0.025	0.100
1075	0.031	0.022	0.021	0.030	0.020	0.018	0.022	0.024	0.027	0.028	0.027	0.100
1125	0.030	0.021	0.020	0.029	0.020	0.018	0.021	0.022	0.025	0.026	0.025	0.100
1175	0.030	0.021	0.021	0.028	0.020	0.018	0.021	0.024	0.026	0.027	0.026	0.100
1225	0.030	0.021	0.020	0.028	0.020	0.017	0.020	0.022	0.024	0.025	0.024	0.100
1275	0.029	0.021	0.020	0.027	0.020	0.018	0.020	0.022	0.023	0.024	0.024	0.100
1325	0.029	0.020	0.020	0.026	0.019	0.016	0.019	0.021	0.022	0.023	0.023	0.100
1375	0.029	0.020	0.020	0.026	0.018	0.015	0.018	0.020	0.022	0.022	0.022	0.100
1425	0.029	0.019	0.019	0.025	0.018	0.016	0.018	0.019	0.021	0.021	0.021	0.100
1475	0.028	0.019	0.019	0.025	0.018	0.015	0.018	0.019	0.022	0.023	0.022	0.100
1525	0.028	0.019	0.019	0.025	0.018	0.015	0.018	0.019	0.021	0.021	0.021	0.100
1575	0.028	0.018	0.019	0.024	0.018	0.014	0.017	0.019	0.021	0.021	0.021	0.100
1625	0.027	0.018	0.019	0.024	0.018	0.014	0.017	0.018	0.020	0.022	0.021	0.100
1675	0.027	0.018	0.019	0.023	0.018	0.014	0.017	0.018	0.019	0.020	0.019	0.100
1725	0.026	0.018	0.018	0.022	0.017	0.013	0.016	0.017	0.018	0.019	0.019	0.100
1775	0.027	0.017	0.018	0.022	0.016	0.013	0.015	0.017	0.019	0.019	0.018	0.100
1825	0.026	0.017	0.018	0.021	0.016	0.013	0.015	0.017	0.018	0.018	0.017	0.100
1875	0.026	0.017	0.018	0.021	0.017	0.013	0.015	0.017	0.018	0.019	0.018	0.100
1925	0.026	0.016	0.018	0.020	0.017	0.013	0.015	0.016	0.018	0.018	0.018	0.100
1975	0.025	0.016	0.018	0.020	0.016	0.012	0.014	0.016	0.018	0.018	0.018	0.100

Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET.

Note: There are no interharmonic distortion emission requirements for plant category A1.


4.3.7 Distortions In The 2-9 kHz Frequency Range


SGS

Test is according to chapter 4.7 of standard TR3.2.1 and TR3.2.2.

The results of higher frequency components measurements are represented in the tables and graphics below.

P (%P _n)	0	10	20	30	40	50	60	70	80	90	100	Category B Limit
f (kHz)	I _h (%)	В Linnt I _h (%)										
2.1	0.036	0.027	0.026	0.029	0.028	0.021	0.020	0.023	0.022	0.023	0.022	0.2
2.3	0.033	0.026	0.025	0.026	0.025	0.020	0.019	0.020	0.021	0.022	0.021	0.2
2.5	0.032	0.025	0.025	0.024	0.023	0.020	0.018	0.020	0.019	0.020	0.019	0.2
2.7	0.030	0.023	0.024	0.023	0.022	0.019	0.017	0.019	0.019	0.019	0.018	0.2
2.9	0.028	0.023	0.023	0.021	0.020	0.018	0.016	0.018	0.018	0.017	0.017	0.2
3.1	0.027	0.022	0.023	0.020	0.019	0.018	0.016	0.017	0.017	0.017	0.016	0.2
3.3	0.025	0.021	0.022	0.019	0.018	0.017	0.015	0.016	0.017	0.016	0.016	0.2
3.5	0.024	0.020	0.021	0.017	0.017	0.016	0.014	0.015	0.016	0.016	0.015	0.2
3.7	0.023	0.019	0.021	0.017	0.016	0.015	0.014	0.015	0.015	0.015	0.015	0.2
3.9	0.022	0.019	0.020	0.016	0.015	0.015	0.013	0.015	0.014	0.014	0.014	0.2
4.1	0.021	0.018	0.019	0.016	0.014	0.014	0.013	0.014	0.014	0.014	0.014	0.2
4.3	0.021	0.018	0.019	0.016	0.013	0.014	0.012	0.014	0.014	0.013	0.013	0.2
4.5	0.020	0.017	0.018	0.015	0.013	0.013	0.012	0.013	0.014	0.013	0.013	0.2
4.7	0.020	0.017	0.017	0.015	0.013	0.013	0.012	0.013	0.013	0.012	0.012	0.2
4.9	0.019	0.016	0.017	0.016	0.012	0.013	0.012	0.013	0.013	0.012	0.012	0.2
5.1	0.019	0.016	0.016	0.016	0.013	0.013	0.012	0.013	0.012	0.012	0.012	0.2
5.3	0.018	0.016	0.017	0.016	0.014	0.015	0.013	0.013	0.013	0.012	0.012	0.2
5.5	0.017	0.015	0.016	0.016	0.013	0.014	0.012	0.013	0.012	0.012	0.012	0.2
5.7	0.016	0.014	0.016	0.016	0.014	0.014	0.014	0.013	0.013	0.012	0.012	0.2
5.9	0.015	0.014	0.016	0.017	0.015	0.015	0.014	0.015	0.015	0.014	0.014	0.2
6.1	0.015	0.015	0.017	0.018	0.016	0.017	0.016	0.016	0.017	0.016	0.016	0.2
6.3	0.016	0.016	0.018	0.018	0.018	0.019	0.017	0.019	0.020	0.018	0.018	0.2
6.5	0.016	0.016	0.016	0.018	0.017	0.019	0.017	0.018	0.018	0.016	0.016	0.2
6.7	0.016	0.015	0.015	0.017	0.017	0.018	0.016	0.015	0.016	0.014	0.012	0.2
6.9	0.016	0.015	0.016	0.016	0.016	0.018	0.015	0.015	0.015	0.013	0.013	0.2
7.1	0.016	0.015	0.016	0.017	0.017	0.018	0.015	0.014	0.014	0.013	0.012	0.2
7.3	0.016	0.015	0.017	0.017	0.017	0.019	0.015	0.015	0.014	0.013	0.012	0.2
7.5	0.016	0.017	0.018	0.019	0.019	0.020	0.015	0.015	0.015	0.014	0.013	0.2
7.7	0.019	0.018	0.019	0.021	0.020	0.022	0.017	0.017	0.016	0.015	0.014	0.2
7.9	0.129	0.113	0.114	0.118	0.118	0.123	0.134	0.141	0.141	0.150	0.150	0.2
8.1	0.075	0.059	0.062	0.063	0.063	0.065	0.076	0.078	0.078	0.084	0.088	0.2
8.3	0.016	0.017	0.018	0.020	0.020	0.021	0.017	0.016	0.015	0.013	0.012	0.2
8.5	0.014	0.015	0.016	0.017	0.018	0.018	0.014	0.013	0.012	0.011	0.011	0.2
8.7	0.013	0.013	0.015	0.016	0.017	0.017	0.013	0.012	0.011	0.009	0.008	0.2
8.9	0.012	0.013	0.014	0.015	0.017	0.017	0.013	0.012	0.011	0.009	0.008	0.2

Note: There are no high-frequency distortion emission requirements for plant category A1.

4.4 CONTROL AND REGULATION

SGS

4.4.1 Active Power Control Functions

A PV power plant must be equipped with active power control functions capable of controlling the active power supplied by a PV power plant in the Point of Connection using activation orders with set points. It must be possible to indicate set points for active power with a 1 kW resolution or better.

4.4.1.1 Frequency Response

The test is to verify the automatic response for active power reduction due to over frequency variations according to chapter 5.2.1 of standard TR3.2.1 and TR3.2.2.

In the event of frequency deviations in the public electricity supply grid, the PV power plant must contribute to grid stability by automatically reducing active power at grid frequencies above f_R . This is referred to as frequency response.

It must be possible to set the frequency response function for the frequency points shown in Figure 8.

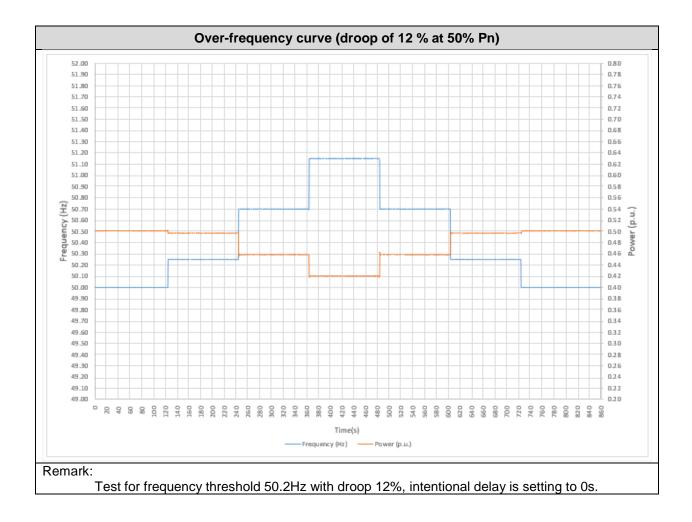
It must be possible to set the frequency f_R to any value in the 50.00-52.00 Hz range with an accuracy of 10 mHz or higher. The standard f_R value is 50.20 Hz. The f_R setting value is determined by the transmission system operator.

It must be possible to set the droop for the downward regulation to any value in the range 2-12% of Pn and this must be tested with an accuracy of $\pm 10\%$ of Pn. The standard value for droop is 4% of Pn. In this context, droop is the change in active power as a function of the grid frequency. Droop is stated as a percentage of the plant's nominal output.

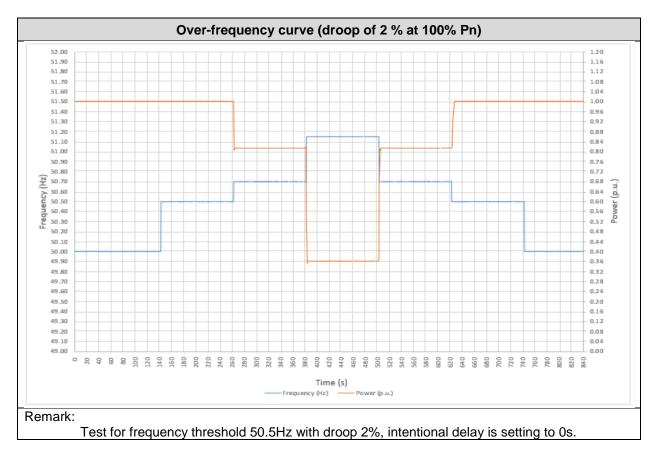


Figure 8 Frequency response for a PV power plant.

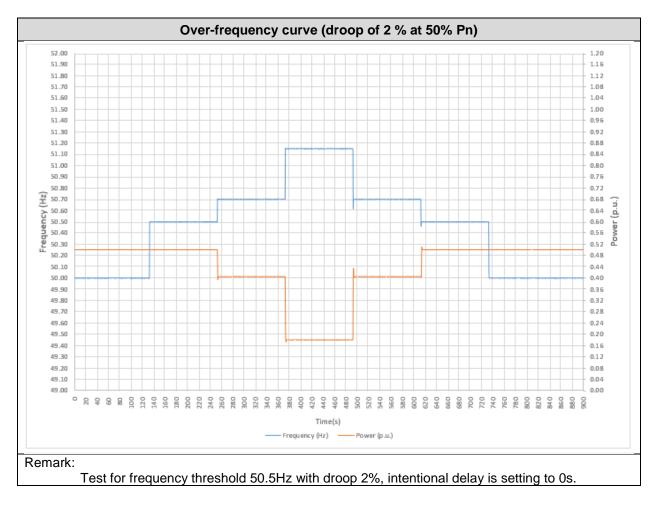
The following measuring points a) to g) have be tested:


Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET.

Threshold frequency 50.20 Hz in combination with a droop of 12 % at 100% Pn										
Step	Frequency measured	Power measured (p.u)	Power desired (p.u)	Deviation (%)	Variation expected	Variation measured	Delay time measured (<2s)			
a)	50.00	1.002	1.000	0.2	No power variation	0.2% Pn				
b)	50.25	0.994	0.992	0.2	-0.8% Pn	-0.6% Pn	0.5s			
c)	50.70	0.917	0.917	0.0	-8.3% Pn	-8.3% Pn	0.5s			
d)	51.15	0.841	0.842	-0.1	-15.8% Pn	-15.9% Pn	0.5s			
e)	50.70	0.917	0.917	0.0	-8.3% Pn	-8.3% Pn	0.5s			
f)	50.25	0.994	0.992	0.2	-0.8% Pn	-0.6% Pn	0.5s			
g)	50.00	1.002	1.000	0.2	No power variation	0.2% Pn	0.5s			



	Threshold frequency 50.20 Hz in combination with a droop of 12 % at 50% Pn									
Step	Frequency measured	Power measured (p.u)	Power desired (p.u)	Deviation (%)	Variation expected	Variation measured	Delay time measured (<2s)			
a)	50.00	0.501	0.500	0.1	No power variation	0.2% Pn				
b)	50.25	0.497	0.496	0.1	-0.8% Pn	-0.6% Pn	0.5s			
c)	50.70	0.458	0.458	0.0	-8.3% Pn	-8.4% Pn	0.5s			
d)	51.15	0.420	0.421	-0.1	-15.8% Pn	-16.0% Pn	0.5s			
e)	50.70	0.458	0.458	0.0	-8.3% Pn	-8.4% Pn	0.5s			
f)	50.25	0.497	0.496	0.1	-0.8% Pn	0.6% Pn	0.5s			
g)	50.00	0.501	0.500	0.1	No power variation	0.2% Pn	0.5s			



	Threshold frequency 50.50 Hz in combination with a droop of 2 % at 100% Pn									
Step	Frequency measured	measured desired		Variation measured	Delay time measured (<2s)					
a)	50.00	1.002	1.000	0.2	No power variation	0.2% Pn				
b)	50.50	1.002	1.000	0.2	No power variation	0.2% Pn	0.1s			
c)	50.70	0.815	0.800	1.5	-20.0% Pn	-18.5% Pn	0.5s			
d)	51.15	0.363	0.350	1.3	-65.0% Pn	-63.7% Pn	0.1s			
e)	50.70	0.814	0.800	1.4	-20.0% Pn	-18.6% Pn	0.1s			
f)	50.50	1.002	1.000	0.2	No power variation	0.2% Pn	0.4s			
g)	50.00	1.002	1.000	0.2	No power variation	0.2% Pn	0.1s			

	Threshold frequency 50.5 Hz in combination with a droop of 2 % at 50% Pn									
Step	Frequency measured	Power measured (p.u)	Power desired (p.u)	Deviation (%)	Variation expected	Variation measured	Delay time measured (<2s)			
a)	50.00	0.501	0.500	0.1	No power variation	0.2% Pn				
b)	50.50	0.501	0.500	0.1	No power variation	0.2% Pn	0.1s			
c)	50.70	0.405	0.400	0.5	-20.0% Pn	-19.0% Pn	0.4s			
d)	51.15	0.180	0.175	0.5	-65.0% Pn	-64.0% Pn	0.5s			
e)	50.70	0.405	0.400	0.5	-20.0% Pn	-19.0% Pn	0.4s			
f)	50.50	0.501	0.500	0.1	No power variation	0.2% Pn	0.5s			
g)	50.00	0.501	0.500	0.1	No power variation	0.2% Pn	0.1s			

4.4.1.2 Frequency Control

SGS

The test is to verify the frequency control function according to chapter 5.2.2 of standard TR3.2.2.

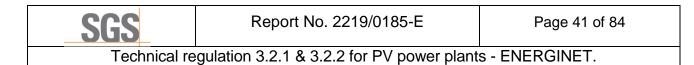
It is not applicable due to the inverter is applying to plant category A1, A2 and B defined in this standard, according to manufacturer Statements. The test is only applicable to plant categories C and D.

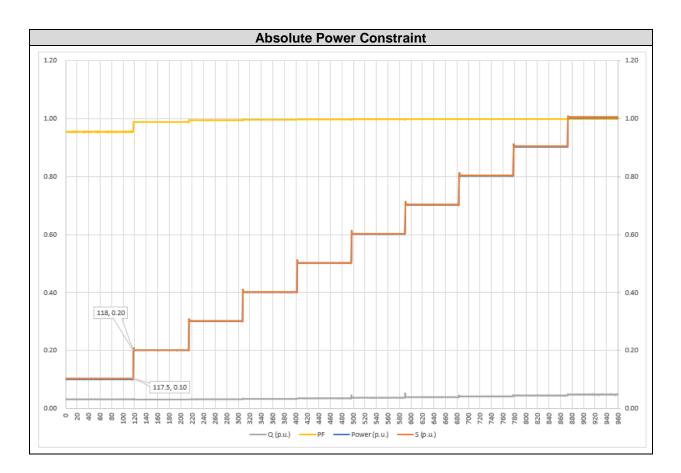
4.4.1.3 Constraint Functions

A PV power plant must be equipped with constraint functions, i.e. supplementary active power control functions.

The constraint functions are used to avoid instability or overloading of the public electricity supply grid in connection with switching in the public electricity supply grid, in fault situations or the like.

4.4.1.3.1 Absolute Power Constraint


An absolute power constraint is used to limit active power from a PV power plant to a set point-defined maximum power limit in the Point of Connection.


The test has been performed according to chapter 5.2.2.1 of standard TR3.2.1 and chapter 5.2.3.1 of standard TR3.2.2.

Test results are offered at the table below.

Active Power Setpoint (%Pn)	Power measured (%Pn)	Active Power Deviation from setpoint (%)	Time Response (s)
10%	10%	0.0%	< 0.5
20%	20.1%	0.0%	< 0.5
30%	30.1%	0.1%	< 0.5
40%	40.1%	0.1%	< 0.5
50%	50.1%	0.1%	< 0.5
60%	60.2%	0.2%	< 0.5
70%	70.2%	0.2%	< 0.5
80%	80.2%	0.2%	< 0.5
90%	90.4%	0.4%	< 0.5
100%	100.3%	0.3%	< 0.5

Test results are graphically represented below.

4.4.1.3.2 Delta Power Constraint (Spinning Reserve)

A delta power constraint is used to limit the active power from a PV power plant to a desired constant value in proportion to the possible active power.

The test should be performed according to chapter 5.2.3.2 of standard TR3.2.2.

It is not applicable due to the inverter is apply to plant category A1, A2 and B defined in this standard, according to manufacturer Statements. The test is only applicable to plant categories C and D.

4.4.1.3.3 Ramp Rate Constraint

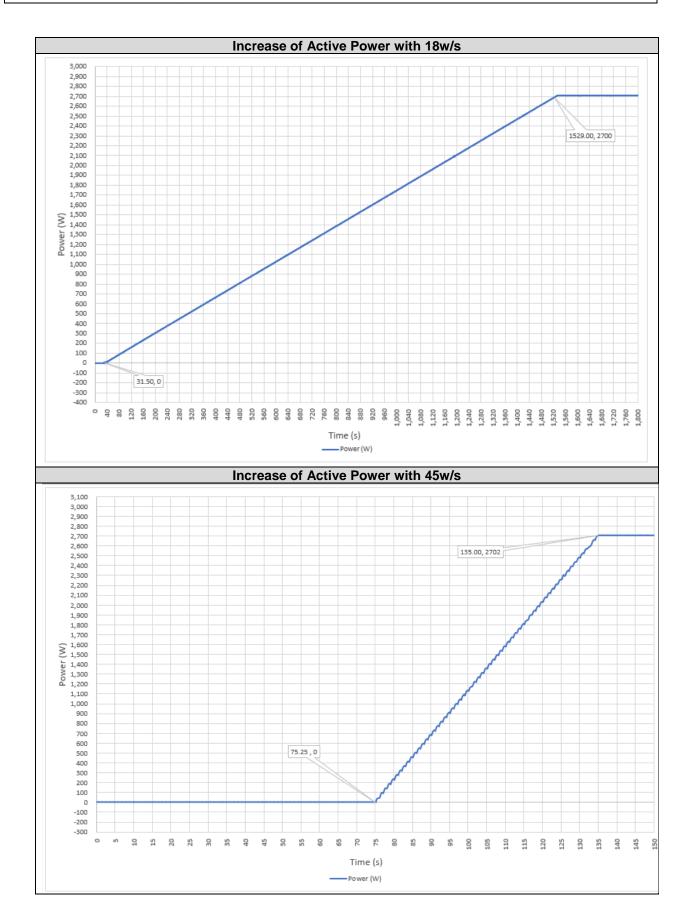
SGS

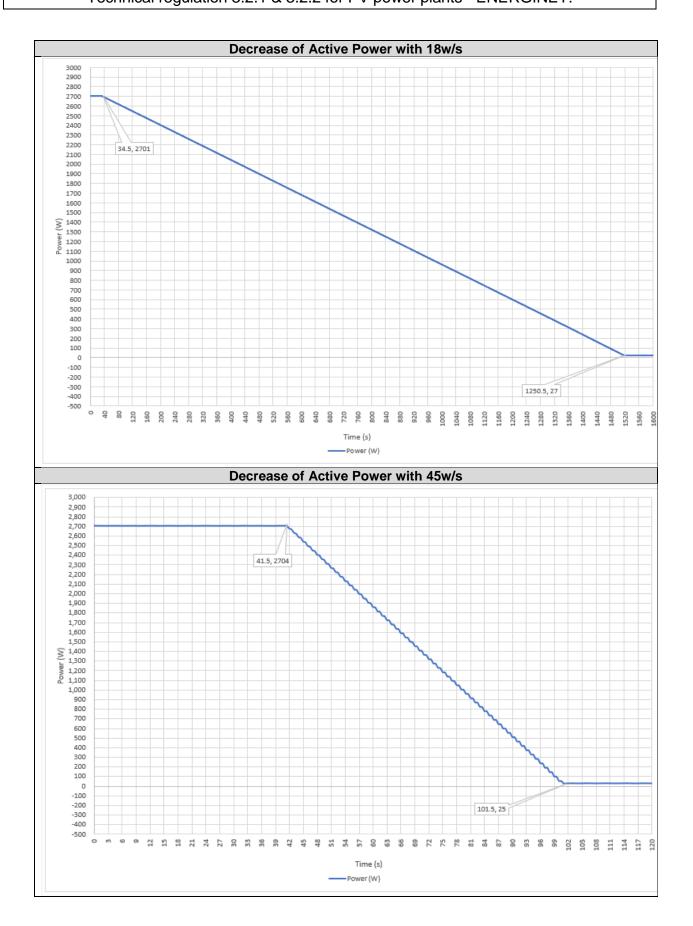
Ramp rate constraint is used to limit the maximum speed by which the active power can be changed in the event of changes in power or in the set points for a PV power plant.

The test has been performed according to chapter 5.2.2.2 of standard TR3.2.1 and chapter 5.2.3.3 of standard TR3.2.2. The maximum standard value for the ramp rate constraint cannot be greater than 100kW/s

Gradient (ΔP) range can be setting from 1.8W/s to 45W/s. the following test is performed by setting gradient at 1.8W/s and 45W/s

Test results are offered in the table and pictures below:


Increase of Active Power								
Gradient (ΔP) desired (W/s)Nominal Ramp Time (s)Gradient measured (W/s)Measured Ramp time (s)								
1.8	1500.0	1.8	1482.0					
45.0	60.0	45.2	60.0					


Decrease of Active Power									
Gradient (ΔP) desired (W/s)Nominal Ramp Time (s)Gradient measured (W/s)Measured Ramp time (s)									
1.8	1500.0	1.8	1486						
45.0	60.0	45.1	60.0						

Note:

1. The Gradient is adjustable from 1.8W/s to 45W/s.

2. It has been verified that the inverter complies with a maximum nonlinearity less than $\pm 10\%$.

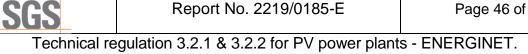
4.4.2 Reactive power and voltage control functions

A PV power plant must be equipped with reactive power and voltage control functions capable of controlling the reactive power supplied by a PV power plant in the Point of Connection, and with a control function capable of controlling the voltage in the voltage reference point via activation orders containing set points for the specified parameters.

4.4.2.1 Q Control

This test verifies the capability of the inverter to provide a fixed value of reactive power according to chapter 5.3.1 of standard TR3.2.1 and TR3.2.2. The accuracy of the control performed and of the set point may not deviate by more than $\pm 2\%$ of the set point value or by $\pm 0.5\%$ of the rated power, depending on which yields the highest tolerance.

At high active power levels the reactive power provided by the inverter is automatically limited by the inverter in order to protect against over current.

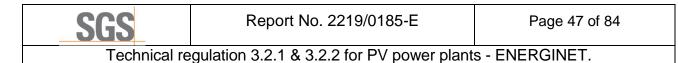

P Desired (%Sn)	Power DC (W)	P measured (%Sn)	Q desired (%Sn)	Q measured (%Sn)	Power Factor (cos φ)	Q Measured Accuracy(*) (Limited ±0.97%Pn)
10%	290	9.4	-48.43	-48.06	0.192	0.37
20%	560	19.5	-48.43	-47.94	0.377	0.49
30%	828	29.4	-48.43	-48.40	0.519	0.03
40%	1104	39.4	-48.43	-47.95	0.635	0.48
50%	1367	49.1	-48.43	-47.67	0.717	0.76
60%	1656	59.4	-48.43	-48.43	0.775	0.00
70%	1887	67.3	-48.43	-49.20	0.807	-0.77
80%	2177	78.0	-48.43	-48.32	0.850	0.11
90%	2411	86.4	-48.43	-47.92	0.875	0.51
100%	2415	86.4	-48.43	-47.91	0.875	0.52

The following table shows the test results:

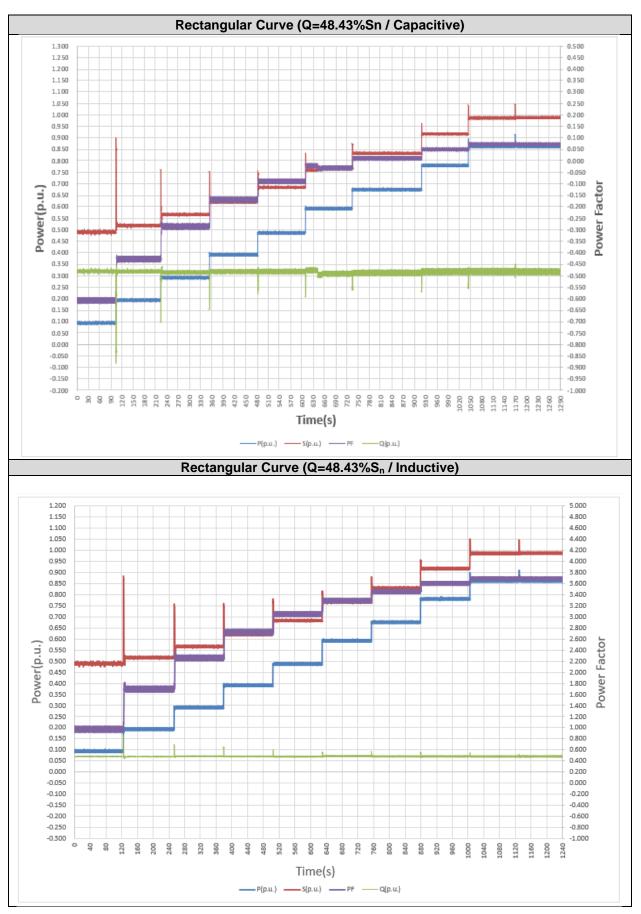
(*) The accuracy of the control performed and of the set point may not deviate by more than $\pm 2\%$ of the set point value.

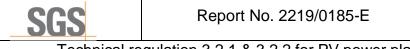
Setting Point value is $-48.43\% \times 2700W = -1308W$

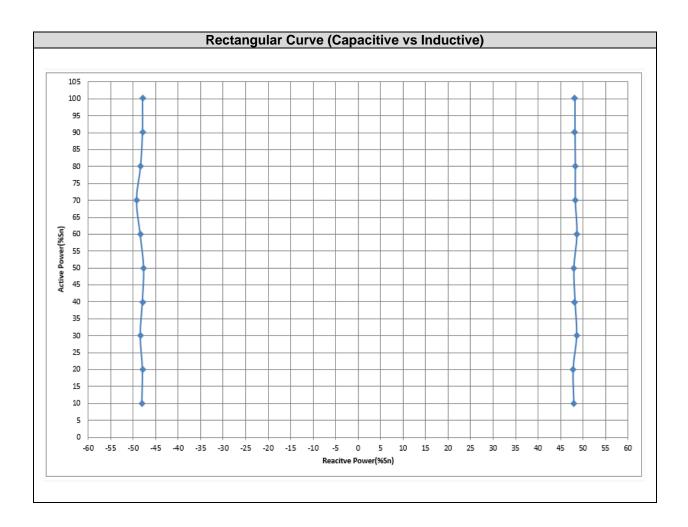
The accuracy should be $\pm 2\%$ x (-1308) W = ± 26.16 W which is $\pm 0.97\%$ Pn



	Rectangular Curve (Q=48.43%Sn / Inductive)										
P Desired (%Sn)	Power DC (W)	P measured (%Sn)	Q desired (%Sn)	Q measured (%Sn)	Power Factor (cos φ)	Q Measured Accuracy(*) (Limited ±0.97%Pn)					
10%	290	9.4	48.43	47.98	0.192	-0.45					
20%	559	19.3	48.43	47.82	0.374	-0.61					
30%	828	29.1	48.43	48.57	0.514	0.14					
40%	1103	39.2	48.43	48.23	0.630	-0.20					
50%	1365	48.7	48.43	47.99	0.712	-0.44					
60%	1656	59.2	48.43	48.64	0.773	0.21					
70%	1888	67.6	48.43	48.28	0.814	-0.15					
80%	2178	78.0	48.43	48.29	0.850	-0.14					
90%	2404	86.1	48.43	48.22	0.872	-0.21					
100%	2408	86.2	48.43	48.21	0.873	-0.22					


(*) The accuracy of the control performed and of the set point may not deviate by more than $\pm 2\%$ of the set point value.

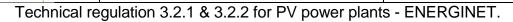

Setting Point value is 48.43% x 2700W = 1308W


The accuracy should be $\pm 2\% \times 1308W = \pm 26.16W$ which is $\pm 0.97\%$ Pn

Test results are represented at diagrams below.

4.4.2.2 Power Factor Control

SGS

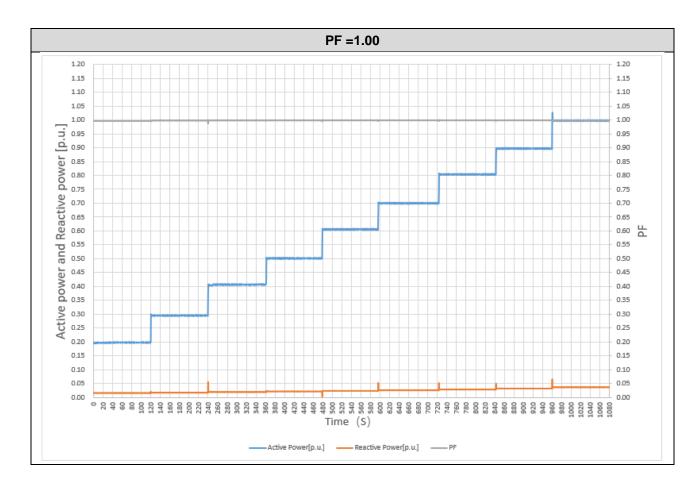

The power factor control function controls reactive power proportionately to the active power in the Point of Connection. Tests have been done according to chapter 5.3.2 of standard TR3.2.1 and TR3.2.2.

The accuracy of the control performed and of the setpoint shall not deviate by more than $\pm 2\%$ of the set point value or by $\pm 0.5\%$ of the rated power, depending on which yields the highest tolerance.

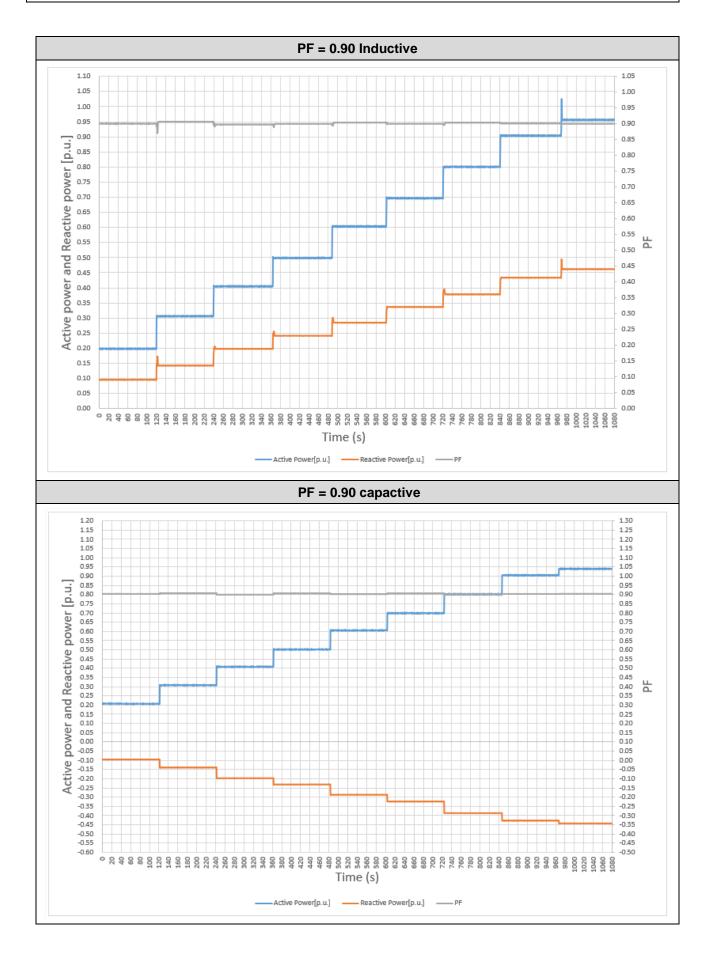
The test have been performed to check the possibility of establishing a power factor limit on current Injection, first at 1.0, second at 0.9 and 0.8. The following table shows the test results:

	PF = 1.00									
P/Pn (%)	Power (p.u.)	Q (p.u.)	Measured cos φ	Desired cos φ	Δ cos φ (±0.020)					
20%	0.199	0.015	0.997	1.000	-0.003					
30%	0.296	0.017	0.998	1.000	-0.002					
40%	0.407	0.019	0.999	1.000	-0.001					
50%	0.502	0.021	0.999	1.000	-0.001					
60%	0.606	0.023	0.999	1.000	-0.001					
70%	0.701	0.026	0.999	1.000	-0.001					
80%	0.805	0.028	0.999	1.000	-0.001					
90%	0.898	0.032	0.999	1.000	-0.001					
100%	0.998	0.036	0.999	1.000	-0.001					
Note: ±2% of the	e set point value u	sed for defining t	he limited							

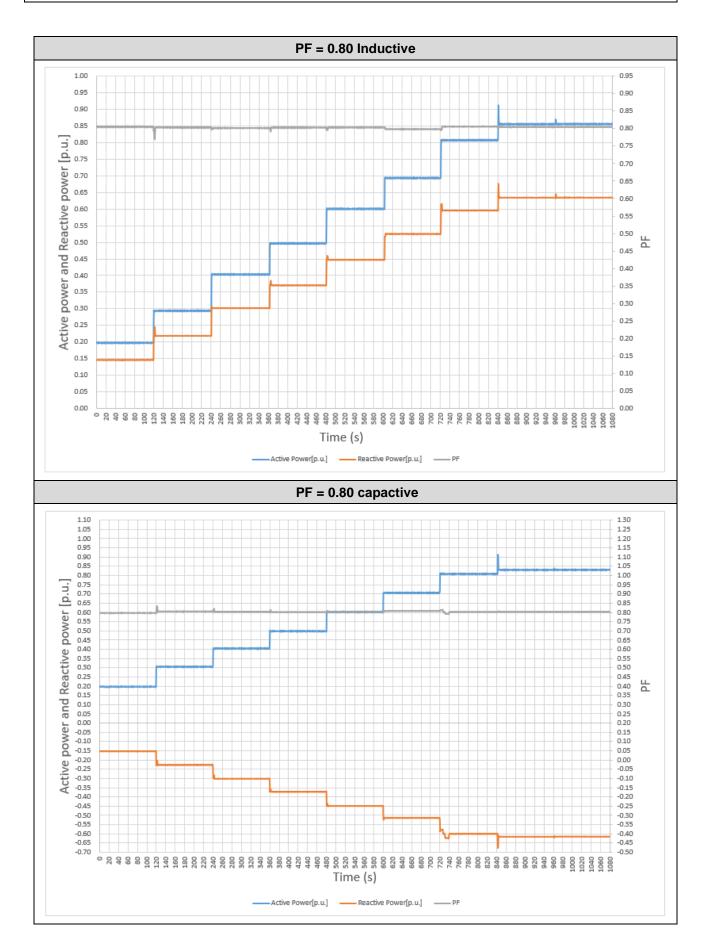
	PF = 0.90 Inductive									
P/Pn (%)	Power (p.u.)	Q (p.u.)	Measured cos φ	Desired cos φ	Δ cos φ (±0.018)					
20%	0.199	0.096	0.901	0.900	0.001					
30%	0.306	0.143	0.906	0.900	0.006					
40%	0.405	0.199	0.898	0.900	-0.002					
50%	0.499	0.242	0.900	0.900	0.000					
60%	0.603	0.285	0.904	0.900	0.004					
70%	0.697	0.337	0.900	0.900	0.000					
80%	0.801	0.379	0.904	0.900	0.004					
90%	0.904	0.435	0.901	0.900	0.001					
100% (*)	0.956	0.463	0.900	0.900	0.000					
Note: ±2% of the	e set point value ι	used for defining t	he limited							


PF = 0.90 capactive									
P/Pn (%)	Power (p.u.)	Q (p.u.)	Measured cos φ	Desired cos φ	Δ cos φ (±0.018)				
20%	0.205	-0.097	0.904	0.900	0.004				
30%	0.306	-0.141	0.908	0.900	0.008				
40%	0.406	-0.199	0.898	0.900	-0.002				
50%	0.500	-0.233	0.907	0.900	0.007				
60%	0.604	-0.289	0.902	0.900	0.002				
70%	0.698	-0.325	0.906	0.900	0.006				
80%	0.801	-0.388	0.900	0.900	0.000				
90%	0.904	-0.429	0.903	0.900	0.003				
100% (*)	0.939	-0.444	0.904	0.900	0.004				

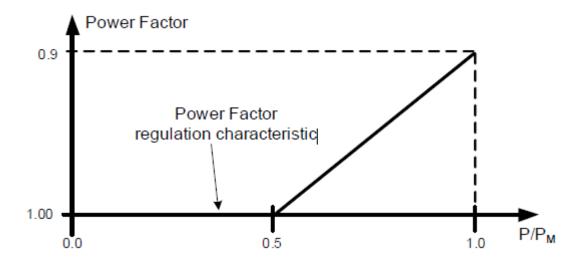
(*) Because of limited by apparent power, the active does not reach to 100% when $\cos \varphi = 0.9$.


	PF = 0.80 Inductive									
P/Pn (%)	Power (p.u.)	Q (p.u.)	Measured cos φ	Desired cos φ	Δ cos φ (±0.016)					
20%	0.198	0.146	0.805	0.800	0.005					
30%	0.295	0.219	0.802	0.800	0.002					
40%	0.404	0.302	0.801	0.800	0.001					
50%	0.498	0.370	0.802	0.800	0.002					
60%	0.602	0.447	0.803	0.800	0.003					
70%	0.694	0.525	0.798	0.800	-0.002					
80%	0.808	0.595	0.805	0.800	0.005					
90% (*)	0.857	0.634	0.804	0.800	0.004					
100% (*)	0.857	0.634	0.804	0.800	0.004					
Note: ±2% of the	e set point value ι	used for defining t	he limited							

	PF = 0.80 capactive							
P/Pn (%)	Power (p.u.)	Q (p.u.)	Measured cos φ	Desired cos φ	Δ cos φ (±0.016)			
20%	0.199	-0.151	0.796	0.800	-0.004			
30%	0.306	-0.226	0.805	0.800	0.005			
40%	0.405	-0.301	0.803	0.800	0.003			
50%	0.498	-0.372	0.801	0.800	0.001			
60%	0.602	-0.449	0.801	0.800	0.001			
70%	0.705	-0.515	0.808	0.800	0.008			
80%	0.807	-0.603	0.801	0.800	0.001			
90% (*)	0.829	-0.618	0.802	0.800	0.002			
100% (*)	0.829	-0.617	0.802	0.800	0.002			
Note: ±2% of the	e set point value ι	used for defining t	he limited					


(*) Because of limited by apparent power, the active does not reach to 100% when $\cos \varphi = 0.8$.

4.4.2.3 Voltage Control


According to chapter 5.3.3 of standard TR3.2.2, the voltage control function stabilises the voltage in the voltage reference point. Voltage control must have a setting range within minimum to maximum voltage, with an accuracy of 0.5% or better of the nominal voltage.

It is not applicable due to the inverter is apply to plant category A1, A2 and B defined in this standard, according to manufacturer Statements. The test is only applicable to plant categories C and D.

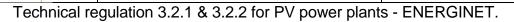
4.4.2.4 Automatic Power Factor Control

According to chapter 5.3.3 of standard TR3.2.1 and chapter 5.3.4 of standard TR3.2.2, the automatic Power Factor control function automatically activates/deactivates the Power Factor control at defined voltage levels in the voltage reference point.

The principle of the automatic Power Factor control is illustrated in Figure below:

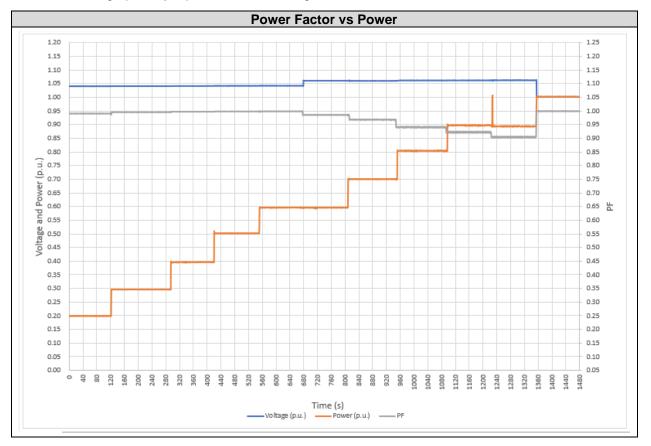
The default setting for the automatic control (PF) is given by the following three support points with linear interpolation between them:

1: $P/P_M = 0.0$, PF = 1.002: $P/P_M = 0.5$, PF = 1.003: $P/P_M = 1.0$, PF = 0.90


Note: P_M indicates the active power which can be generated under the given circumstances.

The activation level for the function is normally 105% of the nominal voltage, and the deactivation level is normally 100% of the nominal voltage. The activation/deactivation level must be adjustable via set points.

The test has been done with the following threshold values settled at the inverter.


Curve Parameters						
Point	Active Pov	wer	cos φ			
A	20%*Pn		1.000			
В	50%* Pr	n	1.000			
С	100%* Pn		0.900			
V lock-in		V lock-out				
105%Un		100%Un				


Test results are offered in the table below.

			Test	t results				
P Desired (%Sn)	P measured (p.u.)	Q measured (p.u.)	Voltage Desired (p.u.)	Voltage Measured (p.u.)	Power Factor desired (cos φ)	Power Factor measured (cos φ)	Power Factor Deviation (cos φ)	
0.20	0.199	0.028	<1.05	1.040	1.000	0.990	-0.010	
0.30	0.296	0.029	<1.05	1.041	1.000	0.995	-0.005	
0.40	0.396	0.030	<1.05	1.041	1.000	0.997	-0.003	
0.50	0.501	0.033	<1.05	1.042	1.000	0.998	-0.002	
0.60	0.596	0.032	<1.05	1.042	1.000	0.998	-0.002	
0.60	0.596	-0.103	>1.05	1.061	0.980	0.985	0.005	
0.70	0.700	-0.182	>1.05	1.060	0.960	0.968	0.008	
0.80	0.804	-0.292	>1.05	1.061	0.940	0.940	0.000	
0.90	0.897	-0.378	>1.05	1.062	0.920	0.922	0.002	
1.00	0.894	-0.422	>1.05	1.062	0.900	0.904	0.004	
1.00	1.002	0.050	<=1.00	1.001	1.000	0.999	-0.001	
This test	1.00 1.002 0.050 <=1.00							

Test results are graphically represented at the diagrams below:

4.4.3 System Protection

According to chapter 5.4 of standard TR3.2.2, a PV power plant must be equipped with system protection – a control function which must be capable of very quickly regulating the active power supplied by a PV power plant to one or more predefined set points based on a downward regulation order. The set points are determined by the electricity supply undertaking upon commissioning.

The PV power plant must have at least five different configurable regulation step options. The following regulation steps are recommended as default values:

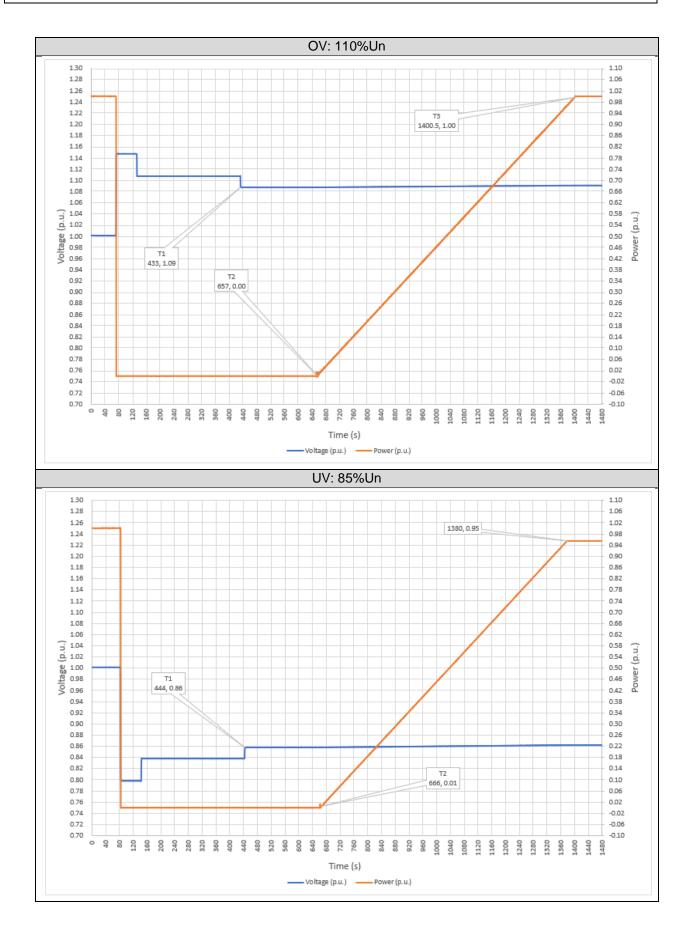
- 1. Up to 70% of rated power
- 2. Up to 50% of rated power
- 3. Up to 40% of rated power
- 4. Up to 10% of rated power

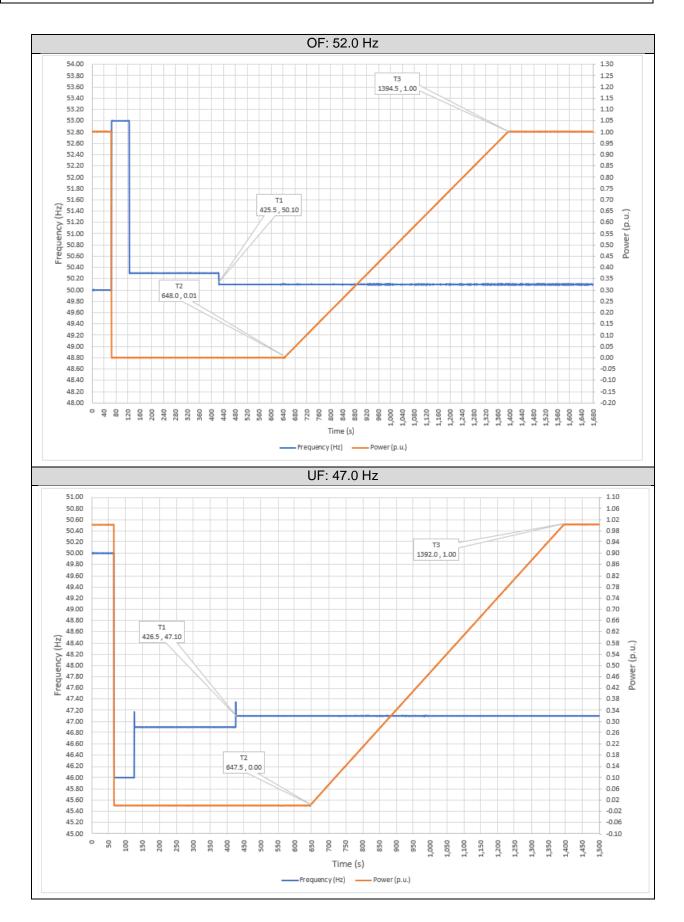
5. Up to 0% of rated power, ie the plant is shut down, but not disconnected from the grid.

It is not applicable due to the inverter is apply to plant category A1, A2 and B defined in this standard, according to manufacturer Statements. The test is only applicable to plant categories C and D.

4.5 RECONNECTION

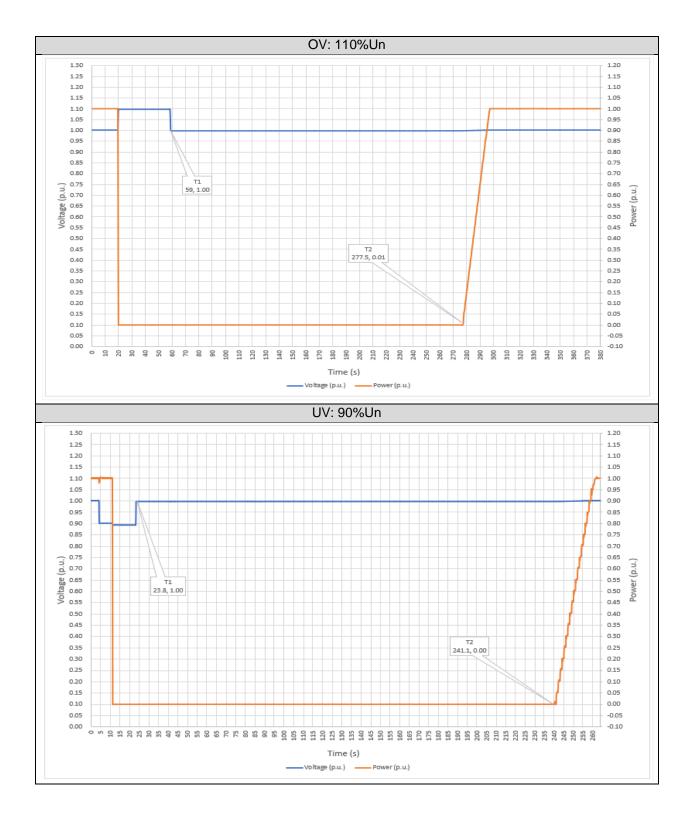
Reconnection requirements are different when unit is connected as plant category A1 or plant category A2, B. The settings of reconnect voltage and frequency is adjustable.

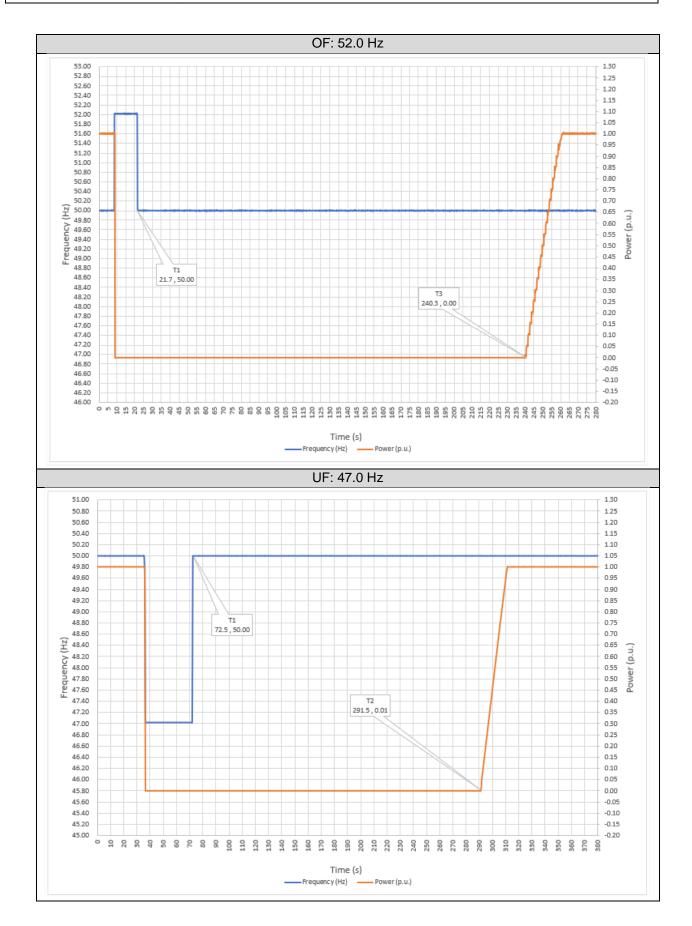

For connected as plant category A1, the normal operating voltage is Uc+10% and Uc-15%, and the frequency range is 49.00 to 51.00 Hz. Automatic connection of a plant can at the earliest take place three minutes after the voltage has come within the normal operating voltage range, and the frequency is within the 47.00 to 50.20 Hz range. The maximum permitted upward regulation of the active power is at a droop of 10% Pn/min.


For connected as plant category A2 or B, the normal operating voltage is Uc±10%, and the frequency range is 47.00 to 52.00 Hz. Automatic connection of a PV power plant can take place no earlier than three minutes after the voltage and frequency have come within the normal production range.

Test results are graphically represented at the diagrams below:

For plant category A1:


Туре	Required Delay time	Time measured (s)	Upward regulation of the active power
OV: 110%Un	>3 min	224.0	8.1% Pn/min
UV: 85%Un	>3 min	222.0	7.9% Pn/min
OF: 50.2 Hz	>3 min	222.5	8.0% Pn/min
UF: 47.0 Hz	>3 min	221.0	8.1% Pn/min



For plant category A2 or B:

Туре	Required Delay time	Time measured (s)
OV: 110%Un	>3 min	218.5
UV: 90%Un	>3 min	217.3
OF: 52.0 Hz	>3 min	218.6
UF: 47.0 Hz	>3 min	219.0

4.6 VOLTAGE AND FREQUENCY TRIPS

SGS

Voltage and frequency trips requirements are different when unit is connected as plant category A1 or plant category A2, B. The settings of reconnect voltage and frequency is adjustable.

For connected as plant category A1, according to chapter 6.2 of standard TR3.2.1, protective functions with associated operating settings and trip time must match the values in the table below.

Protective function	Symbol	Setting		Functional area		Standard setting**
Overvoltage (step 2)	U>>	1.15 · U _n V		200	ms	200 ms
Overvoltage (step 1)	U>	1.10 · U _n	V	60	s	60 s
Undervoltage (step 1)	U<	0.85 · U _n	V	1060	s	50 s
Undervoltage (step 2)***)	U_<<	0.80 · U _n	V	100	ms	100 ms
Overfrequency	f>	52	Hz	200	ms	200 ms
Underfrequency	f _{<}	47	Hz	200	ms	200 ms
Change of frequency***)	df/dt	±2.5	Hz/s	50 - 100	ms	80 ms

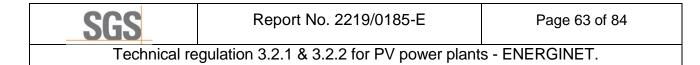
***) One of the specified functions must be implemented.

**) This value is used unless agreed otherwise with the electricity supply undertaking.

For connected as plant category A2, according to chapter 6.3.2 of standard TR3.2.2, protective functions with associated operating settings and trip time must match the values in the table below.

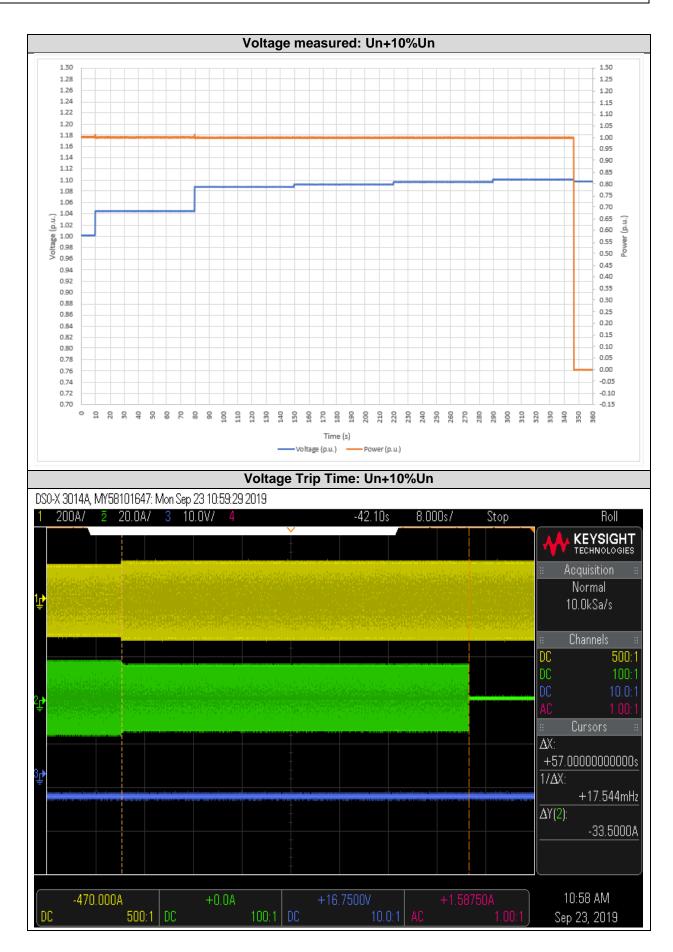
Protective function	Symbol	Setting		Trip time		Standard value
Overvoltage (step 2)	U>>	$1.15 \cdot U_n$	V	200	ms	200 ms
Overvoltage (step 1)	U>	$1.10 \cdot U_n$	V	60	s	60 s
Undervoltage (step 1)	U<	0.85 · U _n	V	1060	s	50 s
Undervoltage (step 2) ***)	U<<	0.80 · U _n	V	100200	ms	100 ms
Overfrequency	f>	52.0	Hz	200	ms	200 ms
Underfrequency	<i>f</i> <	47.0	Hz	200	ms	200 ms
Change of frequency ***)	df/dt	±2.5	Hz/s	50100	ms	80 ms

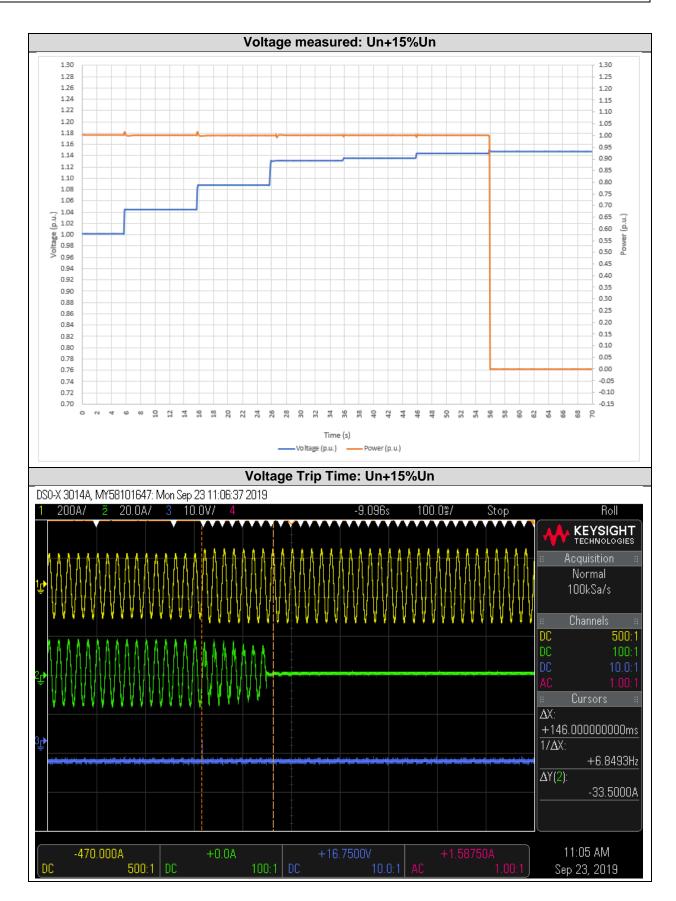
***) One of the specified functions must be implemented.

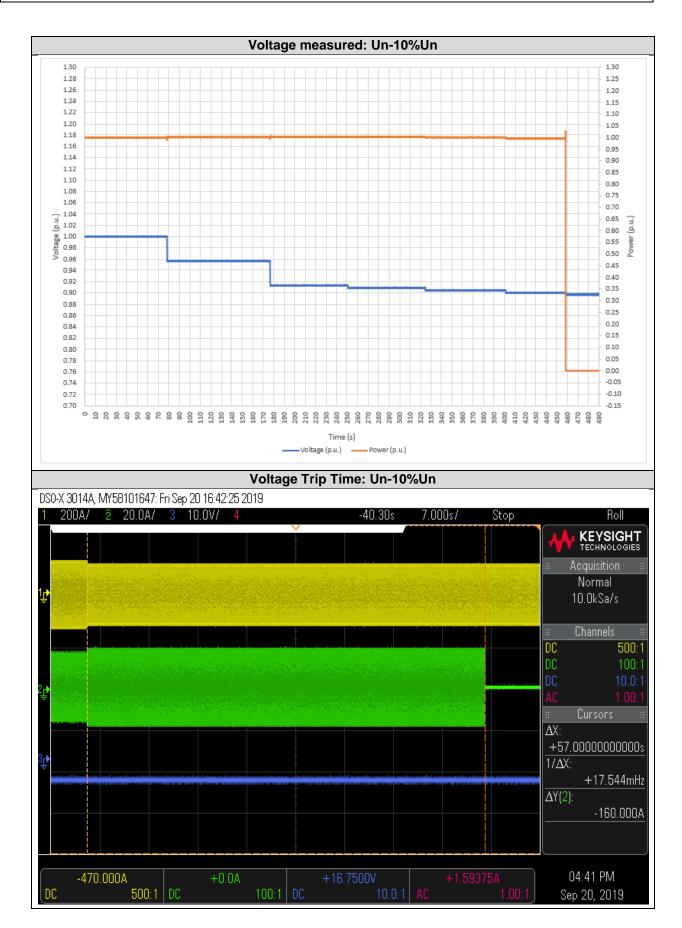

For connected as plant category B, according to chapter 6.3.2 of standard TR3.2.2, protective functions with associated operating settings and trip time must match the values in the table below.

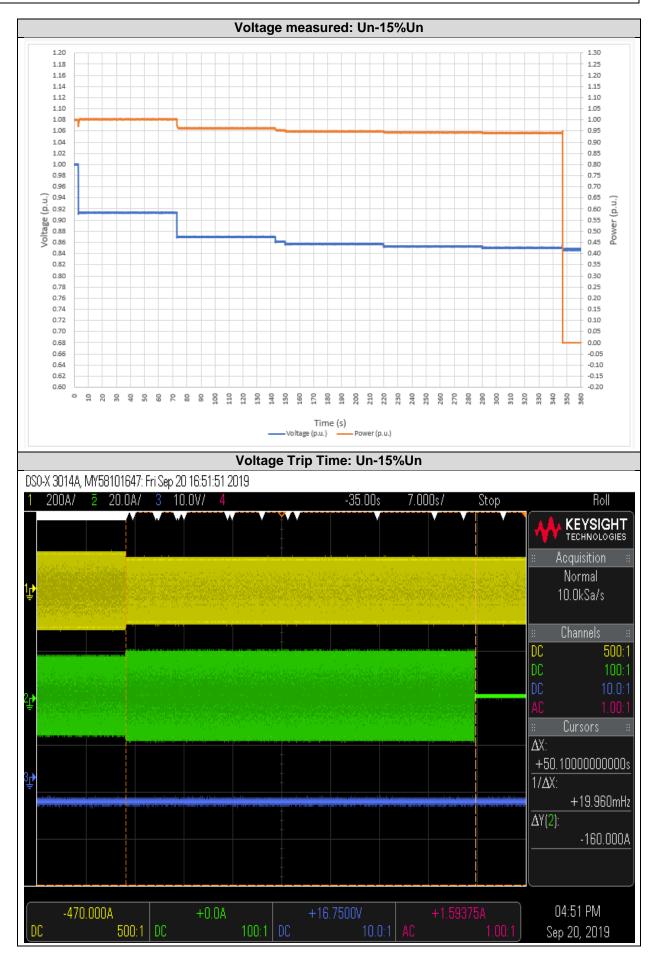
Protective function	Symbol	Setting		Trip time		Standard value
Overvoltage (step 2)	U>>	$1.15 \cdot U_n$	V	200	ms	200 ms
Overvoltage (step 1)	U>	$1.10 \cdot U_n$	V	60	s	60 s
Undervoltage (step 1)	U<	0.90 · U _n	V	1060	s	10 s
Overfrequency	<i>f</i> >	52	Hz	200	ms	200 ms
Underfrequency	<i>f</i> <	47	Hz	200	ms	200 ms
Change of frequency	df/dt	±2.5	Hz/s	50100	ms	80 ms

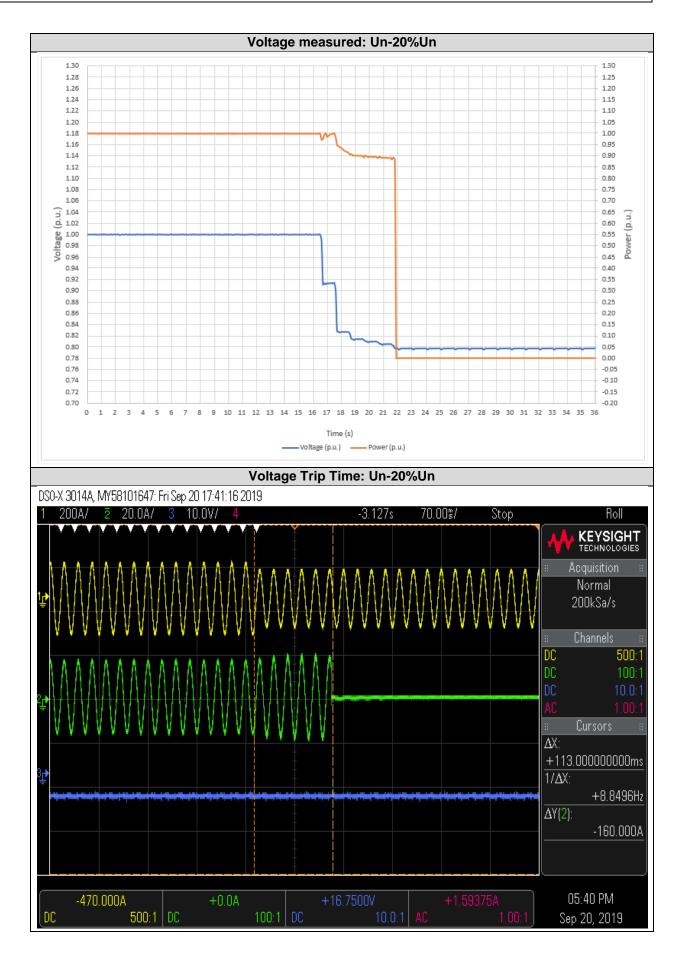
The settings of voltage and frequency trips is adjustable.

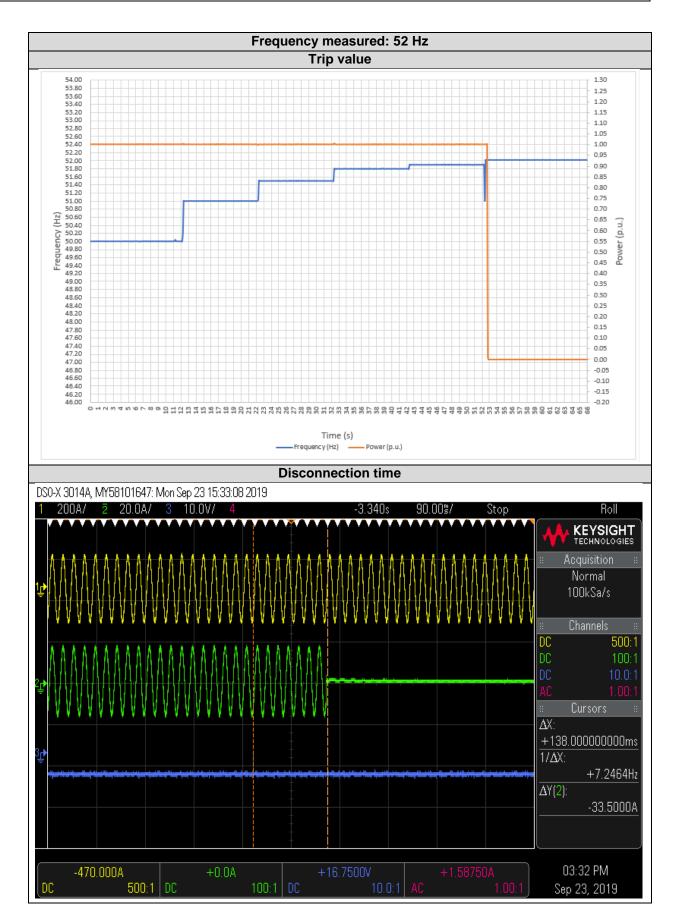

Test results are offered at the tables below.

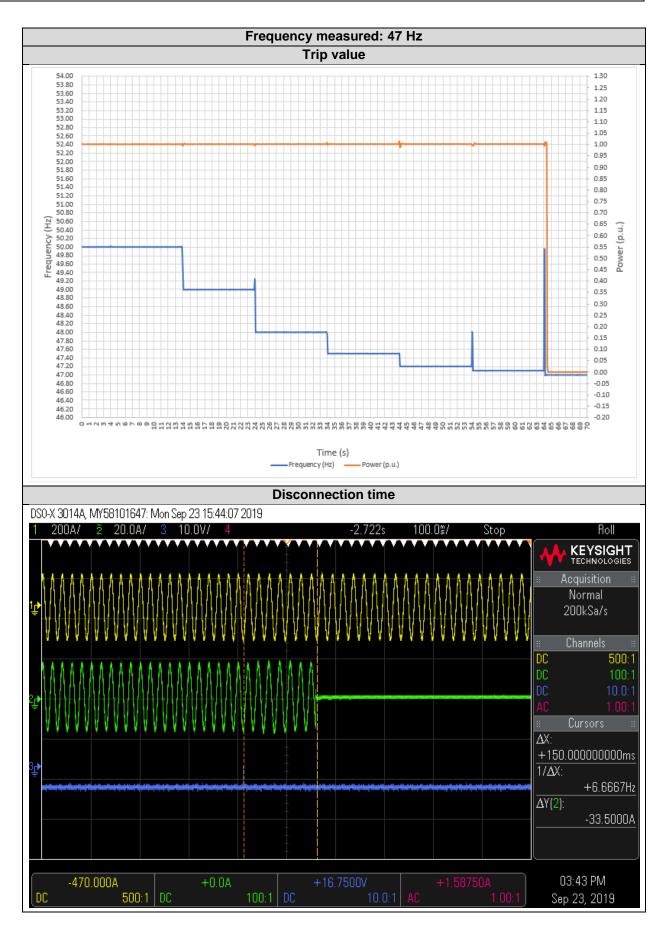

SGS




4.6.1 Voltage Trip


Voltago	Disconnection time limits (s)	Disconnection time measured
Voltage	Disconnection time limits (s)	(s)
Un+10%Un	60	57.000
Un+15%Un	0.2	0.146
Un-10%Un	10 to 60	57.000
Un-15%Un	10 to 60	50.100
Un-20%Un	0.1 to 0.2	0.113



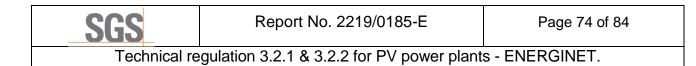


4.6.2 Frequency disconnection

Frequency (Hz)	Disconnection time limits (ms)	Disconnection time measured (ms)
52	200	138
47	200	150

Test results are represented at the images below.

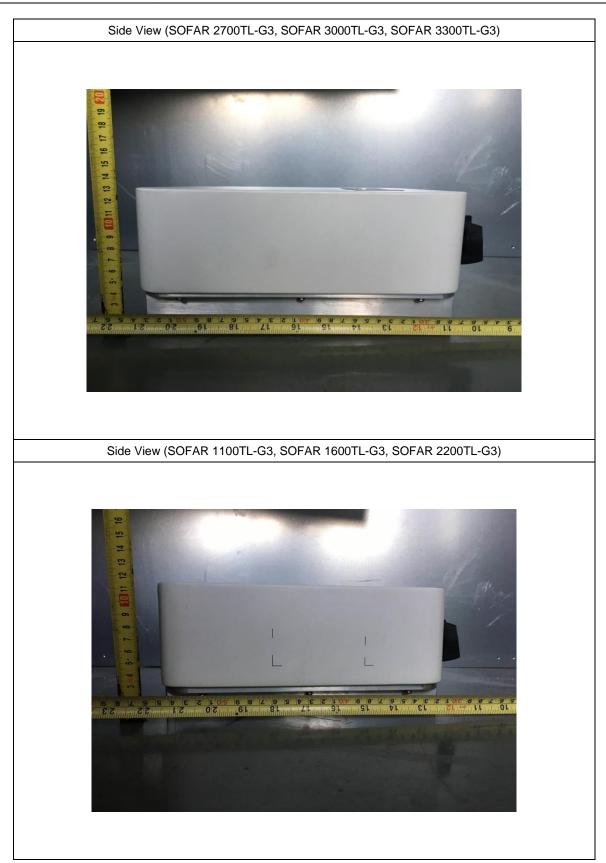
4.6.3 Change Of Frequency

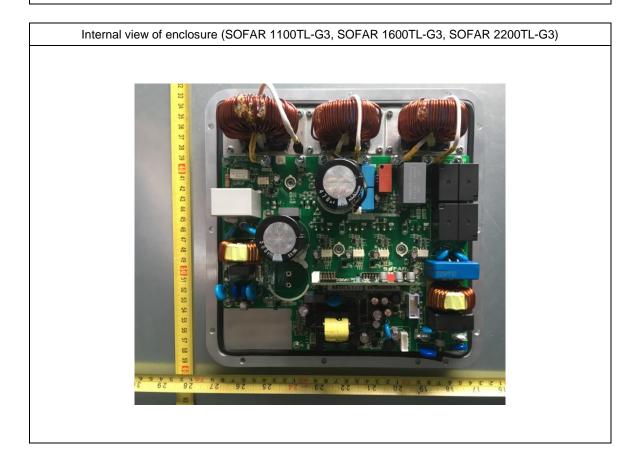

SGS

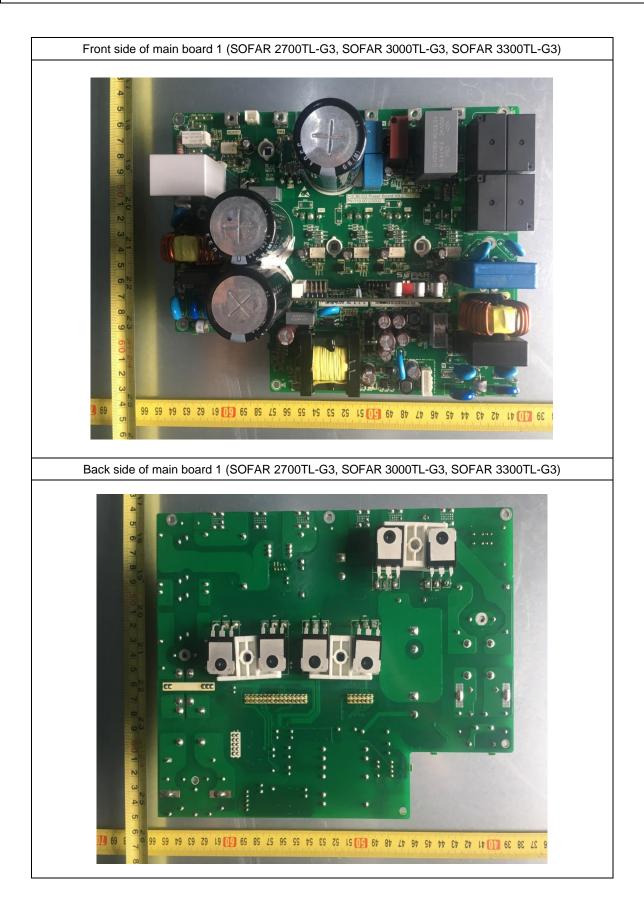
Test results are offered at the table below.

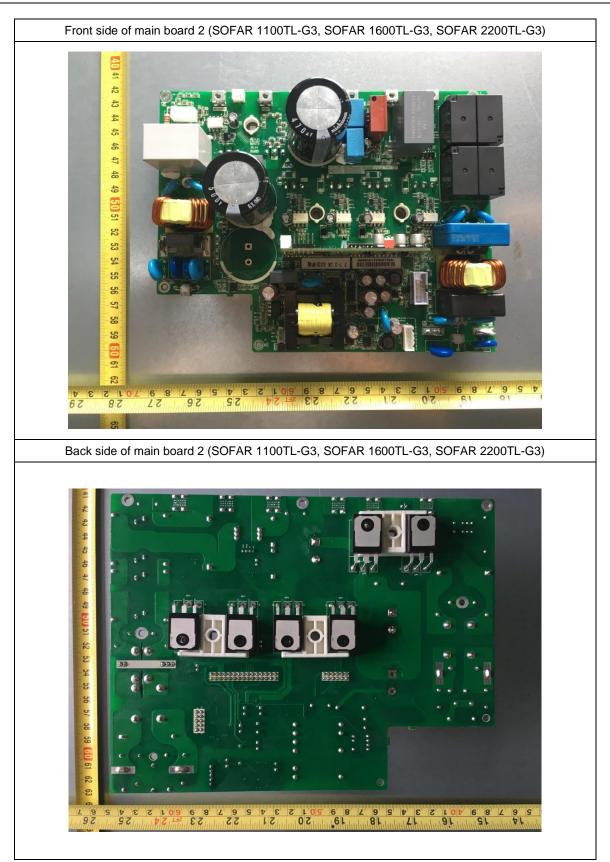
Type of drift	Start Frequency (Hz)	Final Value (Hz)	Ramp measured (Hz/s)	Disconnection time limits (ms)	Disconnection time measured (ms)
Positive frequency drift	50.0	51.3	2.6	50 to 100	74
Negative frequency drift	50.0	48.7	2.6	50 to 100	72

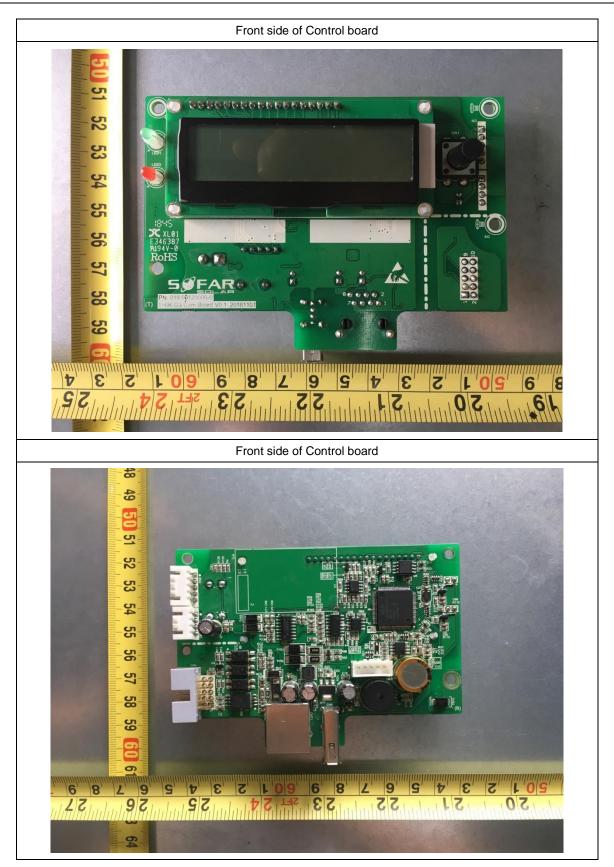
Test results are represented at the images below.

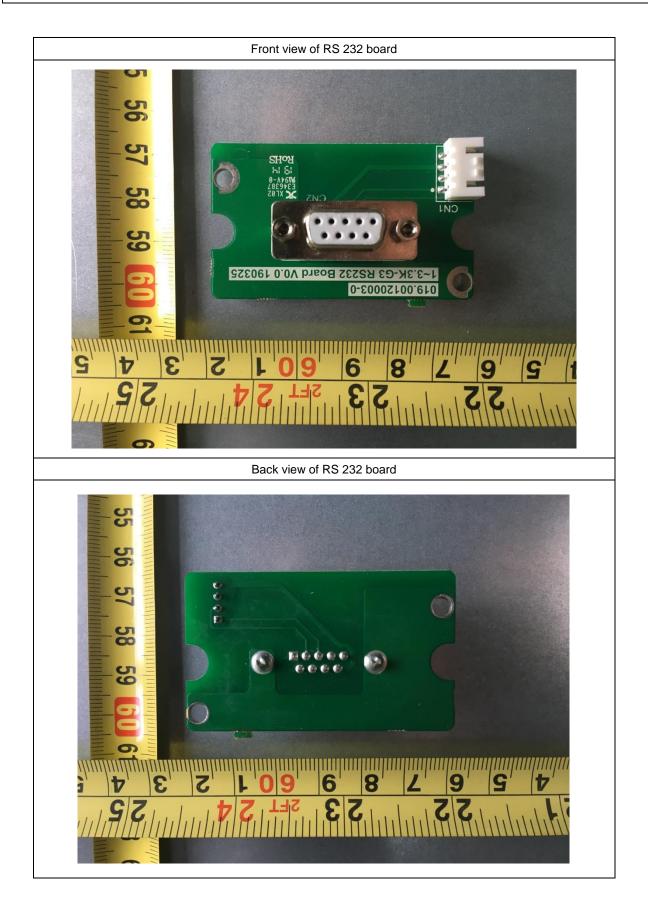

5 PICTURES

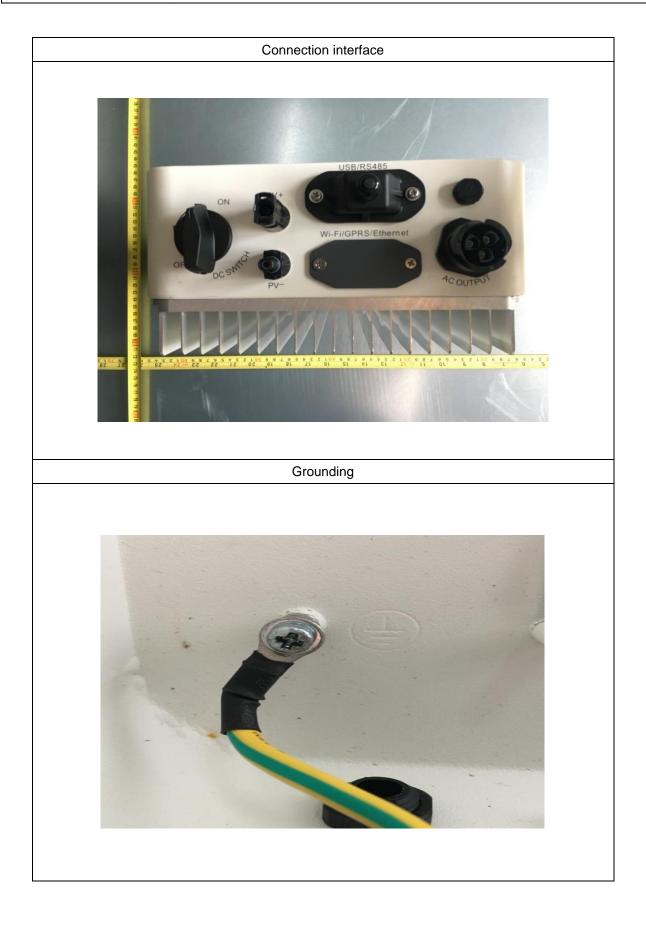


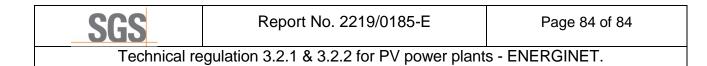


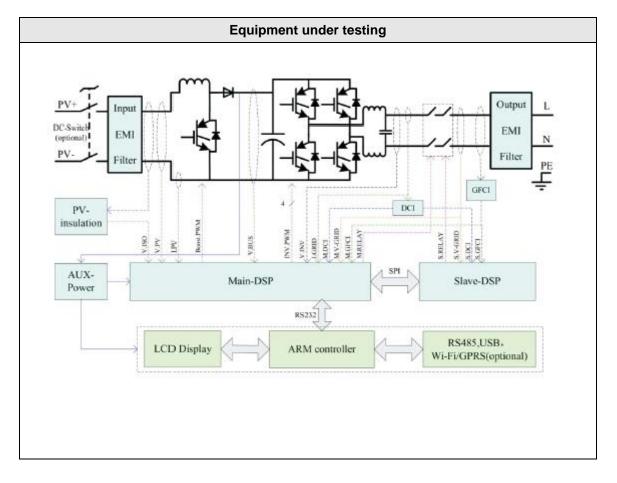

Technical regulation 3.2.1 & 3.2.2 for PV power plants - ENERGINET. Internal view of enclosure (SOFAR 2700TL-G3, SOFAR 3000TL-G3, SOFAR 3300TL-G3)











6 ELECTRICAL SCHEME

-----END OF REPORT-----